Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
1 viewing
jlacosta
Apr 2, 2025
0 replies
Cyclic system of equations
KAME06   2
N 26 minutes ago by Rainbow1971
Source: OMEC Ecuador National Olympiad Final Round 2024 N3 P1 day 1
Find all real solutions:
$$\begin{cases}a^3=2024bc \\ b^3=2024cd \\ c^3=2024da \\ d^3=2024ab \end{cases}$$
2 replies
KAME06
Feb 28, 2025
Rainbow1971
26 minutes ago
Common tangent to diameter circles
Stuttgarden   2
N an hour ago by Giant_PT
Source: Spain MO 2025 P2
The cyclic quadrilateral $ABCD$, inscribed in the circle $\Gamma$, satisfies $AB=BC$ and $CD=DA$, and $E$ is the intersection point of the diagonals $AC$ and $BD$. The circle with center $A$ and radius $AE$ intersects $\Gamma$ in two points $F$ and $G$. Prove that the line $FG$ is tangent to the circles with diameters $BE$ and $DE$.
2 replies
Stuttgarden
Mar 31, 2025
Giant_PT
an hour ago
functional equation
hanzo.ei   2
N an hour ago by MathLuis

Find all functions \( f : \mathbb{R} \to \mathbb{R} \) satisfying the equation
\[
(f(x+y))^2= f(x^2) + f(2xf(y) + y^2), \quad \forall x, y \in \mathbb{R}.
\]
2 replies
hanzo.ei
Yesterday at 6:08 PM
MathLuis
an hour ago
Geometry
youochange   5
N an hour ago by lolsamo
m:}
Let $\triangle ABC$ be a triangle inscribed in a circle, where the tangents to the circle at points $B$ and $C$ intersect at the point $P$. Let $M$ be a point on the arc $AC$ (not containing $B$) such that $M \neq A$ and $M \neq C$. Let the lines $BC$ and $AM$ intersect at point $K$. Let $P'$ be the reflection of $P$ with respect to the line $AM$. The lines $AP'$ and $PM$ intersect at point $Q$, and $PM$ intersects the circumcircle of $\triangle ABC$ again at point $N$.

Prove that the point $Q$ lies on the circumcircle of $\triangle ANK$.
5 replies
youochange
Yesterday at 11:27 AM
lolsamo
an hour ago
Intermediate Counting
RenheMiResembleRice   4
N 5 hours ago by Apple_maths60
A coin is flipped, a 6-sided die numbered 1 through 6 is rolled, and a 10-sided die numbered 0
through 9 is rolled. What is the probability that the coin comes up heads and the sum of the
numbers that show on the dice is 8?
4 replies
RenheMiResembleRice
Yesterday at 7:46 AM
Apple_maths60
5 hours ago
Inequalities
sqing   2
N Yesterday at 2:33 PM by DAVROS
Let $a,b$ be real numbers such that $ a^2+b^2+a^3 +b^3=4   . $ Prove that
$$a+b \leq 2$$Let $a,b$ be real numbers such that $a+b + a^2+b^2+a^3 +b^3=6 . $ Prove that
$$a+b \leq 2$$
2 replies
sqing
Saturday at 1:10 PM
DAVROS
Yesterday at 2:33 PM
Might be the first equation marathon
steven_zhang123   33
N Yesterday at 2:15 PM by eric201291
As far as I know, it seems that no one on HSM has organized an equation marathon before. Click to reveal hidden textSo why not give it a try? Click to reveal hidden text Let's start one!
Some basic rules need to be clarified:
$\cdot$ If a problem has not been solved within $5$ days, then others are eligible to post a new probkem.
$\cdot$ Not only simple one-variable equations, but also systems of equations are allowed.
$\cdot$ The difficulty of these equations should be no less than that of typical quadratic one-variable equations. If the problem involves higher degrees or more variables, please ensure that the problem is solvable (i.e., has a definite solution, rather than an approximate one).
$\cdot$ Please indicate the domain of the solution to the equation (e.g., solve in $\mathbb{R}$, solve in $\mathbb{C}$).
Here's an simple yet fun problem, hope you enjoy it :P :
P1
33 replies
steven_zhang123
Jan 20, 2025
eric201291
Yesterday at 2:15 PM
Inequalities
hn111009   6
N Yesterday at 1:26 PM by Arbelos777
Let $a,b,c>0$ satisfied $a^2+b^2+c^2=9.$ Find the minimum of $$P=\dfrac{a}{bc}+\dfrac{2b}{ca}+\dfrac{5c}{ab}.$$
6 replies
hn111009
Yesterday at 1:25 AM
Arbelos777
Yesterday at 1:26 PM
Congruence
Ecrin_eren   2
N Yesterday at 8:42 AM by Ecrin_eren
Find the number of integer pairs (x, y) satisfying the congruence equation:

3y² + 3x²y + y³ ≡ 3x² (mod 41)

for 0 ≤ x, y < 41.

2 replies
Ecrin_eren
Apr 3, 2025
Ecrin_eren
Yesterday at 8:42 AM
Olympiad
sasu1ke   3
N Yesterday at 1:00 AM by sasu1ke
IMAGE
3 replies
sasu1ke
Saturday at 11:52 PM
sasu1ke
Yesterday at 1:00 AM
How to judge a number is prime or not?
mingzhehu   1
N Saturday at 11:14 PM by scrabbler94
A=(10X1+1)(10X+1),X1,X∈N+
B=(10 X1+3)(10X+7),X∈N,X1∈N
C=(10 X1+9)(10X+9), X∈N,X1∈N
D=(10 X1+1)(10X+3), X1∈N+,X∈N
E=(10 X1+7)(10X+9),X∈N,X1∈N
F=(10 X1+1)(10X+7),X1∈N+,X∈N
G=(10 X1+3)(10X+9),X∈N,X1∈N
H=(10 X1+1)10X+9),X1∈N+,X∈N
I=(10 X1+3)(10X+3),X1∈N,X∈N
J=( 10X1+7)(10X+7),X∈N,X1∈N

For any natural number P∈{P=10N+1,n∈N},make P=A or B or C
If P can make the roots of function group(ABC) without any root group completely made up of integer, P will be a prime
For any natural number P∈{P=10N+3,n∈N},make P=D or E
If P can make the roots of function group(DE) without any root group completely made up
of integer, P will be a prime
For any natural number P∈{P=10N+7,n∈N},make P=F or G
If P can make the roots of function group(FG) without any root group completely made up
of integer, P will be a prime
For any natural number P∈{P=10N+9,n∈N},make P=H or I or J
If P can make the roots of function group(GIJ) without any root group completely made up
of integer, P will be a prime
1 reply
mingzhehu
Saturday at 2:45 PM
scrabbler94
Saturday at 11:14 PM
inequality
revol_ufiaw   3
N Saturday at 2:55 PM by MS_asdfgzxcvb
Prove that that for any real $x \ge 0$ and natural number $n$,
$$x^n (n+1)^{n+1} \le n^n (x+1)^{n+1}.$$
3 replies
revol_ufiaw
Saturday at 2:05 PM
MS_asdfgzxcvb
Saturday at 2:55 PM
What is an isogonal conjugate and why is it useful?
EaZ_Shadow   6
N Saturday at 2:40 PM by maxamc
What is an isogonal conjugate and why is it useful? People use them in Olympiad geometry proofs but I don’t understand why and what is the purpose, as it complicates me because of me not understanding it.
6 replies
EaZ_Shadow
Dec 28, 2024
maxamc
Saturday at 2:40 PM
Any nice way to do this?
NamelyOrange   3
N Saturday at 2:00 PM by pooh123
Source: Taichung P.S.1 math program tryouts

How many ordered pairs $(a,b,c)\in\mathbb{N}^3$ are there such that $c=ab$ and $1\le a\le b\le c\le60$?
3 replies
NamelyOrange
Apr 2, 2025
pooh123
Saturday at 2:00 PM
concurrent wanted, 3 circumcircles related
parmenides51   0
Dec 11, 2020
Source: 2017 Maths Beyond Limits Camp - Olympic Challenge - Younger Division - Geometry p1
Denote by $O$ the circumcenter of $\vartriangle ABC$. The circumcircle of $\vartriangle AOC$ and $\vartriangle AOB$ intersects the lines $AB$ and $AC$ at points $AB, AC$ respectively. Similarly define points $B_A, B_C, C_A, C_B$. Prove that lines $A_BA_C, B_AB_C, C_AC_B$ have a common point.
0 replies
parmenides51
Dec 11, 2020
0 replies
concurrent wanted, 3 circumcircles related
G H J
G H BBookmark kLocked kLocked NReply
Source: 2017 Maths Beyond Limits Camp - Olympic Challenge - Younger Division - Geometry p1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30629 posts
#1
Y by
Denote by $O$ the circumcenter of $\vartriangle ABC$. The circumcircle of $\vartriangle AOC$ and $\vartriangle AOB$ intersects the lines $AB$ and $AC$ at points $AB, AC$ respectively. Similarly define points $B_A, B_C, C_A, C_B$. Prove that lines $A_BA_C, B_AB_C, C_AC_B$ have a common point.
Z K Y
N Quick Reply
G
H
=
a