Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Partitioning coprime integers to arithmetic sequences
sevket12   4
N a few seconds ago by bochidd
Source: 2025 Turkey EGMO TST P3
For a positive integer $n$, let $S_n$ be the set of positive integers that do not exceed $n$ and are coprime to $n$. Define $f(n)$ as the smallest positive integer that allows $S_n$ to be partitioned into $f(n)$ disjoint subsets, each forming an arithmetic progression.

Prove that there exist infinitely many pairs $(a, b)$ satisfying $a, b > 2025$, $a \mid b$, and $f(a) \nmid f(b)$.
4 replies
1 viewing
sevket12
Feb 8, 2025
bochidd
a few seconds ago
Coaxal Circles
fattypiggy123   30
N 2 minutes ago by Ilikeminecraft
Source: China TSTST Test 2 Day 1 Q3
Let $ABCD$ be a quadrilateral and let $l$ be a line. Let $l$ intersect the lines $AB,CD,BC,DA,AC,BD$ at points $X,X',Y,Y',Z,Z'$ respectively. Given that these six points on $l$ are in the order $X,Y,Z,X',Y',Z'$, show that the circles with diameter $XX',YY',ZZ'$ are coaxal.
30 replies
fattypiggy123
Mar 13, 2017
Ilikeminecraft
2 minutes ago
Weird n-variable extremum problem
pithon_with_an_i   0
7 minutes ago
Source: Revenge JOM 2025 Problem 3, Revenge JOMSL 2025 A4
Let $n$ be a positive integer greater or equal to $2$ and let $a_1$, $a_2$, ..., $a_n$ be a sequence of non-negative real numbers. Find the maximum value of $3(a_1  + a_2 + \cdots + a_n) - (a_1^2 + a_2^2 + \cdots + a_n^2) - a_1a_2  \cdots a_n$ in terms of $n$.

(Proposed by Cheng You Seng)
0 replies
pithon_with_an_i
7 minutes ago
0 replies
Quirky tangency and line concurrence with circumcircles
pithon_with_an_i   0
11 minutes ago
Source: Revenge JOM 2025 Problem 2, Revenge JOMSL 2025 G4
Let $ABC$ be a triangle. $M$ is the midpoint of segment $BC$, and points $E$, $F$ are selected on sides $AB$, $AC$ respectively such that $E$, $F$, $M$ are collinear. The circumcircles $(ABC)$ and $(AEF)$ intersect at a point $P \neq A$. The circumcircle $(APM)$ intersects line $BC$ again at a point $D \neq M$.
Show that the lines $AD$, $EF$ and the tangent to $(AEF)$ at point $P$ concur.

(Proposed by Soo Eu Khai)
0 replies
1 viewing
pithon_with_an_i
11 minutes ago
0 replies
UMich Math
missionsqhc   1
N 4 hours ago by Mathzeus1024
I was recently accepted into the University of Michigan as a math major. If anyone studies math at UMich or knows anything about the program, could you share your experience? How would you rate the program? I know UMich is well-regarded for math (among many other things) but from my understanding, it is not quite at the level of an MIT or CalTech. What math programs is it comparable to? How does the rigor of the curricula compare to other top math programs? What are the other students like—is there a thriving contest math community? How accessible are research opportunities and graduate-level classes? Are most students looking to get into pure math and become research mathematicians or are most people focused on applied fields?

Also, aside from the math program, how is UMich overall? What were the advantages and disadvantages from being at such a large school? I was admitted to the Residential College (RC) within the College of Literature, Science, and the Arts. This is supposed to emulate a liberal arts college (while still allowing me access to the resources of a major research university). Could anyone speak on the RC?

How academically-inclined are UMich students? I’ve heard the school is big on sports and school spirit. I am just concerned that there may be a lot of subpar in-state students. How is the climate of Ann Arbor and how is the city in general?

Finally, how is UMich generally regarded? I’m also considering Georgetown. Am I right in viewing the latter as more well-regarded for humanities and the former better-known for STEM?
1 reply
missionsqhc
Yesterday at 4:31 PM
Mathzeus1024
4 hours ago
Integral and Derivative Equation
ahaanomegas   6
N 5 hours ago by Sagnik123Biswas
Source: Putnam 1990 B1
Find all real-valued continuously differentiable functions $f$ on the real line such that for all $x$, \[ \left( f(x) \right)^2 = \displaystyle\int_0^x \left[ \left( f(t) \right)^2 + \left( f'(t) \right)^2 \right] \, \mathrm{d}t + 1990. \]
6 replies
ahaanomegas
Jul 12, 2013
Sagnik123Biswas
5 hours ago
UC Berkeley Integration Bee 2025 Bracket Rounds
Silver08   64
N 5 hours ago by vanstraelen
Regular Round

Quarterfinals

Semifinals

3rd Place Match

Finals
64 replies
Silver08
May 9, 2025
vanstraelen
5 hours ago
Integral
Martin.s   0
6 hours ago
$$\int_0^{\pi/6}\arcsin\Bigl(\sqrt{\cos(3\psi)\cos\psi}\Bigr)\,d\psi.$$
0 replies
Martin.s
6 hours ago
0 replies
Prove the statement
Butterfly   3
N Today at 6:41 AM by Photaesthesia
Given an infinite sequence $\{x_n\} \subseteq  [0,1]$, there exists some constant $C$, for any $r>0$, among the sequence $x_n$ and $x_m$ could be chosen to satisfy $|n-m|\ge r $ and $|x_n-x_m|<\frac{C}{|n-m|}$.
3 replies
Butterfly
May 7, 2025
Photaesthesia
Today at 6:41 AM
Tough integral
Martin.s   1
N Today at 4:49 AM by Martin.s
$$\int_0^{\pi/2}\ln(\tan(\theta/2))
\;\frac{4\cos\theta\cos(2\theta)}{4\sin^4\theta+1}\,d\theta.$$
1 reply
Martin.s
May 12, 2025
Martin.s
Today at 4:49 AM
Calculus
youochange   1
N Yesterday at 1:21 PM by Mathzeus1024
Find the area enclosed by the curves $e^x,e^{-x},x^2+y^2=1$

1 reply
youochange
May 10, 2025
Mathzeus1024
Yesterday at 1:21 PM
Mathematical expectation 1
Tricky123   3
N Yesterday at 1:13 PM by Tricky123
X is continuous random variable having spectrum
$(-\infty,\infty) $ and the distribution function is $F(x)$ then
$E(X)=\int_{0}^{\infty}(1-F(x)-F(-x))dx$ and find the expression of $V(x)$

Ans:- $V(x)=\int_{0}^{\infty}(2x(1-F(x)+F(-x))dx-m^{2}$

How to solve help me
3 replies
Tricky123
May 11, 2025
Tricky123
Yesterday at 1:13 PM
Derivative of unknown continuous function
smartvong   2
N Yesterday at 12:43 PM by solyaris
Source: UM Mathematical Olympiad 2024
Let $f: \mathbb{R} \to \mathbb{R}$ be a function whose derivative is continuous on $[0,1]$. Show that
$$\lim_{n \to \infty} \sum^n_{k = 1}\left[f\left(\frac{k}{n}\right) - f\left(\frac{2k - 1}{2n}\right)\right] = \frac{f(1) - f(0)}{2}.$$
2 replies
smartvong
Yesterday at 1:05 AM
solyaris
Yesterday at 12:43 PM
Divisibility of cyclic sum
smartvong   1
N Yesterday at 12:06 PM by alexheinis
Source: UM Mathematical Olympiad 2024
Let $n$ be a positive integer greater than $1$. Show that
$$4 \mid (x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n + x_nx_1 - n)$$where each of $x_1, x_2, \dots, x_n$ is either $1$ or $-1$.
1 reply
smartvong
Yesterday at 9:49 AM
alexheinis
Yesterday at 12:06 PM
|AP|+ |BC| =\sqrt3 |AB| if <ABP = 20^o, <PBC =<PCB = 10^o, <PCA = 40^o
parmenides51   3
N Dec 17, 2021 by BarisKoyuncu
Source: Romanian Mathematical Magazine JP 353 https://artofproblemsolving.com/community/c2691230_
In $\vartriangle ABC$, $P \in  Int (\vartriangle ABC)$, $\angle ABP  = 20^o$, $\angle PBC =\angle  PCB  = 10^o$, $\angle PCA  = 40^o$. Prove that $|AP|+ |BC| =\sqrt3 |AB|$.

by Mehmet Sahin - Turkey
3 replies
parmenides51
Dec 14, 2021
BarisKoyuncu
Dec 17, 2021
|AP|+ |BC| =\sqrt3 |AB| if <ABP = 20^o, <PBC =<PCB = 10^o, <PCA = 40^o
G H J
G H BBookmark kLocked kLocked NReply
Source: Romanian Mathematical Magazine JP 353 https://artofproblemsolving.com/community/c2691230_
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30652 posts
#1
Y by
In $\vartriangle ABC$, $P \in  Int (\vartriangle ABC)$, $\angle ABP  = 20^o$, $\angle PBC =\angle  PCB  = 10^o$, $\angle PCA  = 40^o$. Prove that $|AP|+ |BC| =\sqrt3 |AB|$.

by Mehmet Sahin - Turkey
This post has been edited 1 time. Last edited by parmenides51, Dec 14, 2021, 9:45 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sunken rock
4394 posts
#2
Y by
Nobody yet? Come on!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BarisKoyuncu
577 posts
#3
Y by
Trigonometric solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BarisKoyuncu
577 posts
#4
Y by
Non-trigonometric solution
Z K Y
N Quick Reply
G
H
=
a