Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Unbounded Sequences
DVDTSB   2
N 29 minutes ago by Steve12345
Source: Romania TST 2025 Day 2 P2
Let \( a_1, a_2, \ldots, a_n, \ldots \) be a sequence of strictly positive real numbers. For each nonzero positive integer \( n \), define
\[
s_n = a_1 + a_2 + \cdots + a_n \quad \text{and} \quad
\sigma_n = \frac{a_1}{1 + a_1} + \frac{a_2}{1 + a_2} + \cdots + \frac{a_n}{1 + a_n}.
\]Show that if the sequence \( s_1, s_2, \ldots, s_n, \ldots \) is unbounded, then the sequence \( \sigma_1, \sigma_2, \ldots, \sigma_n, \ldots \) is also unbounded.

Proposed by The Problem Selection Committee
2 replies
+1 w
DVDTSB
an hour ago
Steve12345
29 minutes ago
Bang's Lemma
EthanWYX2009   1
N 42 minutes ago by EthanWYX2009
Source: Bang's Lemma
Let $v_1,$ $v_2,$ $\ldots,$ $v_t$ be nonzero vectors in $d$-dimensional space. $m_1,$ $m_2,$ $\ldots ,$ $m_t$ are real numbers. Show that there exists $\varepsilon_1,$ $\varepsilon_2,$ $\ldots ,$ $\varepsilon_t\in\{\pm 1\},$ such that\[\left|\left\langle\sum_{i=1}^t\varepsilon_iv_i,\frac{v_k}{|v_k|}\right\rangle-m_k\right|\ge |v_k|\]holds for all $k=1,$ ${}{}{}2,$ $\ldots ,$ $t.$
1 reply
EthanWYX2009
3 hours ago
EthanWYX2009
42 minutes ago
Thailand MO 2025 P3
Kaimiaku   3
N 44 minutes ago by AblonJ
Let $a,b,c,x,y,z$ be positive real numbers such that $ay+bz+cx \le az+bx+cy$. Prove that $$ \frac{xy}{ax+bx+cy}+\frac{yz}{by+cy+az}+\frac{zx}{cz+az+bx} \le \frac{x+y+z}{a+b+c}$$
3 replies
Kaimiaku
Today at 6:48 AM
AblonJ
44 minutes ago
Grouping angles in a pentagon with bisectors
Assassino9931   1
N an hour ago by nabodorbuco2
Source: Al-Khwarizmi International Junior Olympiad 2025 P2
Let $ABCD$ be a convex quadrilateral with \[\angle ADC = 90^\circ, \ \ \angle BCD = \angle ABC > 90^\circ, \mbox{ and } AB = 2CD.\]The line through \(C\), parallel to \(AD\), intersects the external angle bisector of \(\angle ABC\) at point \(T\). Prove that the angles $\angle ATB$, $\angle TBC$, $\angle BCD$, $\angle CDA$, $\angle DAT$ can be divided into two groups, so that the angles in each group have a sum of $270^{\circ}$.

Miroslav Marinov, Bulgaria
1 reply
Assassino9931
May 9, 2025
nabodorbuco2
an hour ago
No more topics!
Three circles have a common point
Martin N.   3
N Feb 5, 2011 by sankha012
Source: Swiss Math Olympiad 2010 - final round, problem 9
Let $ k$ and $ k'$ two concentric circles centered at $ O$, with $ k'$ being larger than $ k$. A line through $ O$ intersects $ k$ at $ A$ and $ k'$ at $ B$ such that $ O$ seperates $ A$ and $ B$. Another line through $ O$ intersects $ k$ at $ E$ and $ k'$ at $ F$ such that $ E$ separates $ O$ and $ F$.
Show that the circumcircle of $ \triangle{OAE}$ and the circles with diametres $ AB$ and $ EF$ have a common point.
3 replies
Martin N.
Mar 16, 2010
sankha012
Feb 5, 2011
Three circles have a common point
G H J
Source: Swiss Math Olympiad 2010 - final round, problem 9
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Martin N.
434 posts
#1 • 2 Y
Y by Adventure10, Mango247
Let $ k$ and $ k'$ two concentric circles centered at $ O$, with $ k'$ being larger than $ k$. A line through $ O$ intersects $ k$ at $ A$ and $ k'$ at $ B$ such that $ O$ seperates $ A$ and $ B$. Another line through $ O$ intersects $ k$ at $ E$ and $ k'$ at $ F$ such that $ E$ separates $ O$ and $ F$.
Show that the circumcircle of $ \triangle{OAE}$ and the circles with diametres $ AB$ and $ EF$ have a common point.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Luis González
4148 posts
#2 • 2 Y
Y by Adventure10, Mango247
Moreover the circumcircle of $ \triangle OBF$ also passes through such a common point. Consider the inversion through pole $ O$ and power $ \overline{OE} \cdot \overline{OF}.$ Circle with diameter $ EF$ is double and the opposite rays of $ OB,OA$ cut $ k'$ and $ k,$ respectively at the inverse images $ A',B'$ of $ A,B.$ Then $ \odot(OBF) \mapsto EB',$ $ \odot(OEA) \mapsto FA'$ and circle with diameter $ AB$ is transformed into the circle with diameter $ A'B'.$ Let $ P \equiv FA' \cap EB'.$ Since $ EB' \perp FA'$ $ \Longrightarrow$ $ P$ is common point of $ FA',EB'$ and the circles with diameters $ A'B'$ and $ EF.$ Hence, $ \odot(OEA),\odot(OBF)$ and circles with diameters $ AB,EF$ concur at the inverse $ P'$ of $ P.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Martin N.
434 posts
#3 • 3 Y
Y by linpaws, Adventure10, Mango247
Ma solution is the following:
Denote $ k_1$, $ k_2$ the circles with diametres $ AB$, $ DE$, respectively. Moreover, $ k_1\cap k_2 = \{M,N\}$, where $ M$ is in the inner of angle $ \angle{AOE}$, and $ N_1 = AE\cap k_1$ and $ N_2 = AE \cap k_2$.
As $ \angle{AN_1B} = \angle{FN_2E} = 90^{\circ}$ due to Thales' theorem, and $ \triangle{OBF}$ is isosceles with $ \overline{OB} = \overline{OF}$ or $ \angle{FBO} = \angle{OFB}$, we must have $ N = N_1 = N_2$.
Thus, we have
\[ \angle{FEM} = \angle{FNM} = 90^{\circ} - \angle{MNA} = 90^{\circ} - \angle{MBA} = \angle{BAM} = \angle{OAM}\mbox{,}\]
implying that $ AOEM$ is cyclic. :)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sankha012
147 posts
#4 • 2 Y
Y by Adventure10, Mango247
I have made it too much complicated :P
Let $m$ denote the circle with radius $AB$ and $n$ denote the circle with radius $EF$.Draw tangents to $m$ at $A$ and $B$.
The tangent at $E$ meets the tangent at $A$ at $M$ and The tangent at $F$ meets the tangent at $B$ at $N$.The points $M$ and $N$ have equal powers w.r.t $m$ and $n$.So $MN$ is the radical axis of $m$ and $n$.Our required point must lie on $MN$.Observe that $M$ lies on the circumcircle of $\bigtriangleup OAE$.But this is not the required point,since its power w.r.t $n$ is $MF^2>0$.Let $P$ be the projection of $O$ on $MN$.This $P$ is the second intersection of the circle $OAE$ with $MN$.We claim this one is the required point.
$\angle OPE=\angle EAO$ since $A,O,E,P,M$ are concyclic.and since $OA=OE$ we have $\angle OEA=\angle OAE=\angle OPE$.
Also,$\angle FPN=\angle FON=\angle NOB$ since $PONF$ is cyclic and $FN=NB$.Thus $\angle EOB=2\angle OPE=2\angle FPN$.So $\angle FPE=\angle EPN+\angle FPN=\angle EPN+\angle OPE=\frac{\pi}{2}$.So $P\in n$ and since $MN$ is the radical axis,P is also on $m$.
QED
Z K Y
N Quick Reply
G
H
=
a