Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Peer-to-Peer Programs Forum
jwelsh   157
N Dec 11, 2023 by cw357
Many of our AoPS Community members share their knowledge with their peers in a variety of ways, ranging from creating mock contests to creating real contests to writing handouts to hosting sessions as part of our partnership with schoolhouse.world.

To facilitate students in these efforts, we have created a new Peer-to-Peer Programs forum. With the creation of this forum, we are starting a new process for those of you who want to advertise your efforts. These advertisements and ensuing discussions have been cluttering up some of the forums that were meant for other purposes, so we’re gathering these topics in one place. This also allows students to find new peer-to-peer learning opportunities without having to poke around all the other forums.

To announce your program, or to invite others to work with you on it, here’s what to do:

1) Post a new topic in the Peer-to-Peer Programs forum. This will be the discussion thread for your program.

2) Post a single brief post in this thread that links the discussion thread of your program in the Peer-to-Peer Programs forum.

Please note that we’ll move or delete any future advertisement posts that are outside the Peer-to-Peer Programs forum, as well as any posts in this topic that are not brief announcements of new opportunities. In particular, this topic should not be used to discuss specific programs; those discussions should occur in topics in the Peer-to-Peer Programs forum.

Your post in this thread should have what you're sharing (class, session, tutoring, handout, math or coding game/other program) and a link to the thread in the Peer-to-Peer Programs forum, which should have more information (like where to find what you're sharing).
157 replies
jwelsh
Mar 15, 2021
cw357
Dec 11, 2023
k i C&P posting recs by mods
v_Enhance   0
Jun 12, 2020
The purpose of this post is to lay out a few suggestions about what kind of posts work well for the C&P forum. Except in a few cases these are mostly meant to be "suggestions based on historical trends" rather than firm hard rules; we may eventually replace this with an actual list of firm rules but that requires admin approval :) That said, if you post something in the "discouraged" category, you should not be totally surprised if it gets locked; they are discouraged exactly because past experience shows they tend to go badly.
-----------------------------
1. Program discussion: Allowed
If you have questions about specific camps or programs (e.g. which classes are good at X camp?), these questions fit well here. Many camps/programs have specific sub-forums too but we understand a lot of them are not active.
-----------------------------
2. Results discussion: Allowed
You can make threads about e.g. how you did on contests (including AMC), though on AMC day when there is a lot of discussion. Moderators and administrators may do a lot of thread-merging / forum-wrangling to keep things in one place.
-----------------------------
3. Reposting solutions or questions to past AMC/AIME/USAMO problems: Allowed
This forum contains a post for nearly every problem from AMC8, AMC10, AMC12, AIME, USAJMO, USAMO (and these links give you an index of all these posts). It is always permitted to post a full solution to any problem in its own thread (linked above), regardless of how old the problem is, and even if this solution is similar to one that has already been posted. We encourage this type of posting because it is helpful for the user to explain their solution in full to an audience, and for future users who want to see multiple approaches to a problem or even just the frequency distribution of common approaches. We do ask for some explanation; if you just post "the answer is (B); ez" then you are not adding anything useful.

You are also encouraged to post questions about a specific problem in the specific thread for that problem, or about previous user's solutions. It's almost always better to use the existing thread than to start a new one, to keep all the discussion in one place easily searchable for future visitors.
-----------------------------
4. Advice posts: Allowed, but read below first
You can use this forum to ask for advice about how to prepare for math competitions in general. But you should be aware that this question has been asked many many times. Before making a post, you are encouraged to look at the following:
[list]
[*] Stop looking for the right training: A generic post about advice that keeps getting stickied :)
[*] There is an enormous list of links on the Wiki of books / problems / etc for all levels.
[/list]
When you do post, we really encourage you to be as specific as possible in your question. Tell us about your background, what you've tried already, etc.

Actually, the absolute best way to get a helpful response is to take a few examples of problems that you tried to solve but couldn't, and explain what you tried on them / why you couldn't solve them. Here is a great example of a specific question.
-----------------------------
5. Publicity: use P2P forum instead
See https://artofproblemsolving.com/community/c5h2489297_peertopeer_programs_forum.
Some exceptions have been allowed in the past, but these require approval from administrators. (I am not totally sure what the criteria is. I am not an administrator.)
-----------------------------
6. Mock contests: use Mock Contests forum instead
Mock contests should be posted in the dedicated forum instead:
https://artofproblemsolving.com/community/c594864_aops_mock_contests
-----------------------------
7. AMC procedural questions: suggest to contact the AMC HQ instead
If you have a question like "how do I submit a change of venue form for the AIME" or "why is my name not on the qualifiers list even though I have a 300 index", you would be better off calling or emailing the AMC program to ask, they are the ones who can help you :)
-----------------------------
8. Discussion of random math problems: suggest to use MSM/HSM/HSO instead
If you are discussing a specific math problem that isn't from the AMC/AIME/USAMO, it's better to post these in Middle School Math, High School Math, High School Olympiads instead.
-----------------------------
9. Politics: suggest to use Round Table instead
There are important conversations to be had about things like gender diversity in math contests, etc., for sure. However, from experience we think that C&P is historically not a good place to have these conversations, as they go off the rails very quickly. We encourage you to use the Round Table instead, where it is much more clear that all posts need to be serious.
-----------------------------
10. MAA complaints: discouraged
We don't want to pretend that the MAA is perfect or that we agree with everything they do. However, we chose to discourage this sort of behavior because in practice most of the comments we see are not useful and some are frankly offensive.
[list] [*] If you just want to blow off steam, do it on your blog instead.
[*] When you have criticism, it should be reasoned, well-thought and constructive. What we mean by this is, for example, when the AOIME was announced, there was great outrage about potential cheating. Well, do you really think that this is something the organizers didn't think about too? Simply posting that "people will cheat and steal my USAMOO qualification, the MAA are idiots!" is not helpful as it is not bringing any new information to the table.
[*] Even if you do have reasoned, well-thought, constructive criticism, we think it is actually better to email it the MAA instead, rather than post it here. Experience shows that even polite, well-meaning suggestions posted in C&P are often derailed by less mature users who insist on complaining about everything.
[/list]
-----------------------------
11. Memes and joke posts: discouraged
It's fine to make jokes or lighthearted posts every so often. But it should be done with discretion. Ideally, jokes should be done within a longer post that has other content. For example, in my response to one user's question about olympiad combinatorics, I used a silly picture of Sogiita Gunha, but it was done within a context of a much longer post where it was meant to actually make a point.

On the other hand, there are many threads which consist largely of posts whose only content is an attached meme with the word "MAA" in it. When done in excess like this, the jokes reflect poorly on the community, so we explicitly discourage them.
-----------------------------
12. Questions that no one can answer: discouraged
Examples of this: "will MIT ask for AOIME scores?", "what will the AIME 2021 cutoffs be (asked in 2020)", etc. Basically, if you ask a question on this forum, it's better if the question is something that a user can plausibly answer :)
-----------------------------
13. Blind speculation: discouraged
Along these lines, if you do see a question that you don't have an answer to, we discourage "blindly guessing" as it leads to spreading of baseless rumors. For example, if you see some user posting "why are there fewer qualifiers than usual this year?", you should not reply "the MAA must have been worried about online cheating so they took fewer people!!". Was sich überhaupt sagen lässt, lässt sich klar sagen; und wovon man nicht reden kann, darüber muss man schweigen.
-----------------------------
14. Discussion of cheating: strongly discouraged
If you have evidence or reasonable suspicion of cheating, please report this to your Competition Manager or to the AMC HQ; these forums cannot help you.
Otherwise, please avoid public discussion of cheating. That is: no discussion of methods of cheating, no speculation about how cheating affects cutoffs, and so on --- it is not helpful to anyone, and it creates a sour atmosphere. A longer explanation is given in Seriously, please stop discussing how to cheat.
-----------------------------
15. Cutoff jokes: never allowed
Whenever the cutoffs for any major contest are released, it is very obvious when they are official. In the past, this has been achieved by the numbers being posted on the official AMC website (here) or through a post from the AMCDirector account.

You must never post fake cutoffs, even as a joke. You should also refrain from posting cutoffs that you've heard of via email, etc., because it is better to wait for the obvious official announcement. A longer explanation is given in A Treatise on Cutoff Trolling.
-----------------------------
16. Meanness: never allowed
Being mean is worse than being immature and unproductive. If another user does something which you think is inappropriate, use the Report button to bring the post to moderator attention, or if you really must reply, do so in a way that is tactful and constructive rather than inflammatory.
-----------------------------

Finally, we remind you all to sit back and enjoy the problems. :D

-----------------------------
(EDIT 2024-09-13: AoPS has asked to me to add the following item.)

Advertising paid program or service: never allowed

Per the AoPS Terms of Service (rule 5h), general advertisements are not allowed.

While we do allow advertisements of official contests (at the MAA and MATHCOUNTS level) and those run by college students with at least one successful year, any and all advertisements of a paid service or program is not allowed and will be deleted.
0 replies
v_Enhance
Jun 12, 2020
0 replies
k i Stop looking for the "right" training
v_Enhance   50
N Oct 16, 2017 by blawho12
Source: Contest advice
EDIT 2019-02-01: https://blog.evanchen.cc/2019/01/31/math-contest-platitudes-v3/ is the updated version of this.

EDIT 2021-06-09: see also https://web.evanchen.cc/faq-contest.html.

Original 2013 post
50 replies
v_Enhance
Feb 15, 2013
blawho12
Oct 16, 2017
Dear Sqing: So Many Inequalities...
hashtagmath   35
N 3 minutes ago by ohiorizzler1434
I have noticed thousands upon thousands of inequalities that you have posted to HSO and was wondering where you get the inspiration, imagination, and even the validation that such inequalities are true? Also, what do you find particularly appealing and important about specifically inequalities rather than other branches of mathematics? Thank you :)
35 replies
hashtagmath
Oct 30, 2024
ohiorizzler1434
3 minutes ago
Hard FE R^+
DNCT1   5
N 20 minutes ago by jasperE3
Find all functions $f:\mathbb{R^+}\to\mathbb{R^+}$ such that
$$f(3x+f(x)+y)=f(4x)+f(y)\quad\forall x,y\in\mathbb{R^+}$$
5 replies
1 viewing
DNCT1
Dec 30, 2020
jasperE3
20 minutes ago
Maximum of Incenter-triangle
mpcnotnpc   4
N 32 minutes ago by mpcnotnpc
Triangle $\Delta ABC$ has side lengths $a$, $b$, and $c$. Select a point $P$ inside $\Delta ABC$, and construct the incenters of $\Delta PAB$, $\Delta PBC$, and $\Delta PAC$ and denote them as $I_A$, $I_B$, $I_C$. What is the maximum area of the triangle $\Delta I_A I_B I_C$?
4 replies
1 viewing
mpcnotnpc
Mar 25, 2025
mpcnotnpc
32 minutes ago
Something nice
KhuongTrang   26
N 40 minutes ago by KhuongTrang
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
26 replies
KhuongTrang
Nov 1, 2023
KhuongTrang
40 minutes ago
2025 PROMYS Results
Danielzh   24
N 3 hours ago by beishexi
Discuss your results here!
24 replies
Danielzh
Apr 18, 2025
beishexi
3 hours ago
SL Difficulty Level
MajesticCheese   0
4 hours ago
Is there a rough difficulty comparison between IMO shortlist questions and USAMO questions? For example,

SL 1, 2, 3 -> USAMO P1
SL 4, 5, 6 -> USAMO P2
SL 7, 8, 9 -> USAMO P3

(This is just my guess; probably not correct)

Also feel free to compare it with other competitions(like the jmo) as well! :-D
0 replies
MajesticCheese
4 hours ago
0 replies
VOLUNTEERING OPPORTUNITY OPEN TO HIGH/MIDDLE SCHOOLERS
im_space_cadet   11
N 5 hours ago by Lhaj3
Hi everyone!
Do you specialize in contest math? Do you have a passion for teaching? Do you want to help leverage those college apps? Well, I have something for all of you.

I am im_space_cadet, and during the fall of last year, I opened my non-profit DeltaMathPrep which teaches students preparing for contest math the problem-solving skills they need in order to succeed at these competitions. Currently, we are very much understaffed and would greatly appreciate the help of more tutors on our platform.

Each week on Saturday and Wednesday, we meet once for each competition: Wednesday for AMC 8 and Saturday for AMC 10 and we go over a past year paper for the entire class. On both of these days, we meet at 9PM EST in the night.

This is a great opportunity for anyone who is looking to have a solid activity to add to their college resumes that requires low effort from tutors and is very flexible with regards to time.

This is the link to our non-profit for anyone who would like to view our initiative:
https://www.deltamathprep.org/

If you are interested in this opportunity, please send me a DM on AoPS or respond to this post expressing your interest. I look forward to having you all on the team!

Thanks,
im_space_cadet
11 replies
im_space_cadet
Yesterday at 2:23 PM
Lhaj3
5 hours ago
MAA ran out of ideas
fidgetboss_4000   45
N Yesterday at 6:50 PM by Euler...
Source: 10A #16/12A #16
In the following list of numbers, the integer $n$ appears $n$ times in the list for $1 \leq n \leq 200.$ $$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, …, 200, 200, …, 200$$What is the median of the numbers in this list?

$\textbf{(A)}\ 100.5 \qquad\textbf{(B)}\ 134 \qquad\textbf{(C)}\ 142 \qquad\textbf{(D)}\ 150.5 \qquad\textbf{(E)}\ 167$
45 replies
fidgetboss_4000
Feb 5, 2021
Euler...
Yesterday at 6:50 PM
mohs of each oly
cowstalker   18
N Yesterday at 5:45 PM by BS2012
what are the general concencus for the mohs of each of the problems on usajmo and usamo
18 replies
cowstalker
Mar 23, 2025
BS2012
Yesterday at 5:45 PM
Math Camps
jack_ma   12
N Yesterday at 5:25 PM by NoSignOfTheta
What are some math camps (residential and online) for high schoolers?
12 replies
1 viewing
jack_ma
Yesterday at 2:48 AM
NoSignOfTheta
Yesterday at 5:25 PM
How many people get waitlisted st promys?
dragoon   16
N Yesterday at 2:18 PM by sadas123
Asking for a friend here
16 replies
dragoon
Apr 18, 2025
sadas123
Yesterday at 2:18 PM
-2025 answer extract??
bobthegod78   20
N Yesterday at 1:14 PM by BS2012
Source: 2025 AIME I P5

There are $8!= 40320$ eight-digit positive integers that use each of the digits 1, 2, 3, 4, 5, 6, 7, 8 exactly once. Let N be the number of these integers that are divisible by $22$. Find the difference between $N$ and 2025.
20 replies
bobthegod78
Feb 7, 2025
BS2012
Yesterday at 1:14 PM
Inequality with a^2+b^2+c^2+abc=4
cn2_71828182846   71
N Yesterday at 10:34 AM by Novmath
Source: USAMO 2001 #3
Let $a, b, c \geq 0$ and satisfy \[ a^2+b^2+c^2 +abc = 4 . \] Show that \[ 0 \le ab + bc + ca - abc \leq 2. \]
71 replies
cn2_71828182846
Jun 27, 2004
Novmath
Yesterday at 10:34 AM
AIME I 2025 Problem 6
PaperMath   38
N Yesterday at 7:53 AM by NicoN9
Source: 2025 AIME 1 #6
An isosceles trapezoid has an inscribed circle tangent to each of its four sides. The radius of the circle is $3$, and the area of the trapezoid is $72$. Let the parallel sides of the trapezoid have lengths $r$ and $s$, with $r \neq s$. Find $r^2+s^2$
38 replies
PaperMath
Feb 7, 2025
NicoN9
Yesterday at 7:53 AM
Problem 1
SlovEcience   2
N Apr 4, 2025 by Raven_of_the_old
Prove that
\[
C(p-1, k-1) \equiv (-1)^{k-1} \pmod{p}
\]for \( 1 \leq k \leq p-1 \), where \( C(n, m) \) is the binomial coefficient \( n \) choose \( m \).
2 replies
SlovEcience
Apr 4, 2025
Raven_of_the_old
Apr 4, 2025
Problem 1
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SlovEcience
12 posts
#1
Y by
Prove that
\[
C(p-1, k-1) \equiv (-1)^{k-1} \pmod{p}
\]for \( 1 \leq k \leq p-1 \), where \( C(n, m) \) is the binomial coefficient \( n \) choose \( m \).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KAME06
151 posts
#2
Y by
Is that $p$ prime? If the answer is yes:
Case 1: $k=2t+1, t \ge 0$
(1)Then, $\binom{p-1}{(2t+1)-1} = \frac{(p-1)!}{(2t)!(p-2t-1)!} \equiv (-1)^{2t} = 1 \pmod{p} \Rightarrow p \mid  \frac{(p-1)!}{(2t)!(p-2t-1)!} -1 = \frac{(p-1)!-(2t)!(p-2t-1)!}{(2t)!(p-2t-1)!} $, so we must prove that $p$ divides that.
(2)Notice that, by definition of $k$; $2t,p-2t-1 <p$, so $(2t)!(p-2t-1)!$ doesn't have $p$ as a factor. That implies, using (1) and (2):
$p \mid (p-1)!-(2t)!(p-2t-1)!$ (We must prove that).
(3)Claim: $(2t)!(p-2t-1)! \equiv -1 \pmod{p}$. Demo: By induction on $t$...
$t=0$: Using Wilson Theorem: $(0)!(p-1)!=(p-1)! \equiv-1 \pmod{p}$
If $(2l)!(p-2l-1)! \equiv -1 \pmod{p}$, notice that $(2l+1)(2l+2) \equiv (p-(2l+1))(p-(2l+2)) = (p-2l-1)(p-2l-2) \pmod{p}$.
Using that : $-1 \equiv (2l)!(p-2l-1)! \equiv (2l)!(p-2l-3)!(p-2l-2)(p-2l-1) \equiv (2l+1)(2l+2)(2l)!(p-2l-3)!$
$ = (2l+2)!(p-2l-3)!=(2(l+1))!(p-2(l+1)-1)! \pmod{p}$ and that ends the induction.
(4)Using (1)-(3) and Wilson Theorem: $(p-1)!-(2t)!(p-2t-1)! \equiv (-1)-(-1) =0 \pmod{p} \Rightarrow p \mid (p-1)!-(2t)!(p-2t-1)! \Rightarrow \binom{p-1}{(2t+1)-1} \equiv (-1)^{2t} \pmod{p}$

Case 2: $k=2t, t > 0$
(1)Then, $\binom{p-1}{(2t)-1} = \frac{(p-1)!}{(2t-1)!(p-2t)!} \equiv (-1)^{2t-1} = -1 \pmod{p} \Rightarrow p \mid  \frac{(p-1)!}{(2t-1)!(p-2t)!} +1 = \frac{(p-1)!+(2t-1)!(p-2t)!}{(2t-1)!(p-2t)!} $, so we must prove that $p$ divides that.
(2)Notice that, by definition of $k$; $2t-1,p-2t <p$, so $(2t-1)!(p-2t)!$ doesn't have $p$ as a factor. That implies, using (1) and (2):
$p \mid (p-1)!+(2t-1)!(p-2t)!$ (We must prove that).
(3)Claim: $(2t-1)!(p-2t)! \equiv 1 \pmod{p}$. Demo: By induction on $t$...
$t=1$: Using Wilson Theorem: $(1)!(p-2)!=(p-1)! \cdot (-1) \equiv (-1)(-1) =1 \pmod{p}$
If $(2l-1)!(p-2l)! \equiv 1 \pmod{p}$, notice that $(2l)(2l+1) \equiv (p-(2l))(p-(2l+1)) = (p-2l)(p-2l-1) \pmod{p}$.
Using that : $1 \equiv (2l-1)!(p-2l)! \equiv (2l-1)!(p-2l-2)!(p-2l-1)(p-2l) \equiv (2l)(2l+1)(2l-1)!(p-2l-2)!$
$ = (2l+1)!(p-2l-2)!=(2(l+1)-1)!(p-2(l+1))! \pmod{p}$ and that ends the induction.
(4)Using (1)-(3) and Wilson Theorem: $(p-1)!+(2t-1)!(p-2t)! \equiv (-1)-(1) =0 \pmod{p} \Rightarrow p \mid (p-1)!-(2t-1)!(p-2t)! \Rightarrow \binom{p-1}{(2t)-1} \equiv (-1)^{2t} \pmod{p}$.
This post has been edited 1 time. Last edited by KAME06, Apr 4, 2025, 4:16 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Raven_of_the_old
25 posts
#3 • 1 Y
Y by KAME06
SlovEcience wrote:
Prove that
\[
C(p-1, k-1) \equiv (-1)^{k-1} \pmod{p}
\]for \( 1 \leq k \leq p-1 \), where \( C(n, m) \) is the binomial coefficient \( n \) choose \( m \).

Considering p as prime (otherwise it doesn't work as well).
As we very well know
C(p-1, k-1) + C(p-1,k) = C(p,k), hence the result is obvious <3
Z K Y
N Quick Reply
G
H
=
a