Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Mount Inequality erupts in all directions!
BR1F1SZ   1
N 3 minutes ago by sami1618
Source: Austria National MO Part 1 Problem 1
Let $a$, $b$ and $c$ be pairwise distinct nonnegative real numbers. Prove that
\[
(a + b + c) \left( \frac{a}{(b - c)^2} + \frac{b}{(c - a)^2} + \frac{c}{(a - b)^2} \right) > 4.
\](Karl Czakler)
1 reply
BR1F1SZ
42 minutes ago
sami1618
3 minutes ago
Division involving difference of squares
BR1F1SZ   1
N 21 minutes ago by grupyorum
Source: Austria National MO Part 1 Problem 4
Determine all integers $n$ that can be written in the form
\[
n = \frac{a^2 - b^2}{b},
\]where $a$ and $b$ are positive integers.

(Walther Janous)
1 reply
BR1F1SZ
33 minutes ago
grupyorum
21 minutes ago
Erasing the difference of two numbers
BR1F1SZ   0
36 minutes ago
Source: Austria National MO Part 1 Problem 3
Consider the following game for a positive integer $n$. Initially, the numbers $1, 2, \ldots, n$ are written on a board. In each move, two numbers are selected such that their difference is also present on the board. This difference is then erased from the board. (For example, if the numbers $3,6,11$ and $17$ are on the board, then $3$ can be erased as $6 - 3=3$, or $6$ as $17 - 11=6$, or $11$ as $17 - 6=11$.)

For which values of $n$ is it possible to end with only one number remaining on the board?

(Michael Reitmeir)
0 replies
BR1F1SZ
36 minutes ago
0 replies
Centroid, altitudes and medians, and concyclic points
BR1F1SZ   0
39 minutes ago
Source: Austria National MO Part 1 Problem 2
Let $\triangle{ABC}$ be an acute triangle with $BC > AC$. Let $S$ be the centroid of triangle $ABC$ and let $F$ be the foot of the perpendicular from $C$ to side $AB$. The median $CS$ intersects the circumcircle $\gamma$ of triangle $\triangle{ABC}$ at a second point $P$. Let $M$ be the point where $CS$ intersects $AB$. The line $SF$ intersects the circle $\gamma$ at a point $Q$, such that $F$ lies between $S$ and $Q$. Prove that the points $M,P,Q$ and $F$ lie on a circle.

(Karl Czakler)
0 replies
BR1F1SZ
39 minutes ago
0 replies
4 wise men and 100 hats. 3 must guess their numbers
NO_SQUARES   2
N an hour ago by NO_SQUARES
Source: 239 MO 2025 10-11 p5
There are four wise men in a row, each sees only those following him in the row, i.e. the $1$st sees the other three, the $2$nd sees the $3$rd and $4$th, and the $3$rd sees only the $4$th. The devil has $100$ hats, numbered from $1$ to $100$, he puts one hat on each wise man, and hides the extra $96$ hats. After that, each wise man (in turn: first the first, then the second, etc.) loudly calls a number, trying to guess the number of his hat. The numbers mentioned should not be repeated. When all the wise men have spoken, they take off their hats and check which one of them has guessed. Can the sages to act in such a way that at least three of them knowingly guessed?
2 replies
NO_SQUARES
5 hours ago
NO_SQUARES
an hour ago
\sqrt{2-a}+\sqrt{2-b}+\sqrt{2-c}\geqslant 2+\sqrt{(2-a)(2-b)(2-c)}
NO_SQUARES   2
N an hour ago by ektorasmiliotis
Source: 239 MO 2025 8-9 p4
Positive numbers $a$, $b$ and $c$ are such that $a^2+b^2+c^2+abc=4$. Prove that \[\sqrt{2-a}+\sqrt{2-b}+\sqrt{2-c}\geqslant 2+\sqrt{(2-a)(2-b)(2-c)}.\]
2 replies
NO_SQUARES
5 hours ago
ektorasmiliotis
an hour ago
Inequality with a,b,c
GeoMorocco   5
N an hour ago by lele0305
Source: Morocco Training
Let $   a,b,c   $ be positive real numbers such that : $   ab+bc+ca=3   $ . Prove that : $$\frac{\sqrt{1+a^2}}{1+ab}+\frac{\sqrt{1+b^2}}{1+bc}+\frac{\sqrt{1+c^2}}{1+ca}\ge \sqrt{\frac{3(a+b+c)}{2}}$$
5 replies
GeoMorocco
Apr 11, 2025
lele0305
an hour ago
BMO 2024 SL A4
MuradSafarli   2
N an hour ago by GreekIdiot
A4.
Let \(a \geq b \geq c \geq 0\) be real numbers such that \(ab + bc + ca = 3\).
Prove that:
\[
3 + (2 - \sqrt{3}) \cdot \frac{(b-c)^2}{b+(\sqrt{3}-1)c} \leq a+b+c
\]and determine all the cases when the equality occurs.
2 replies
MuradSafarli
Apr 27, 2025
GreekIdiot
an hour ago
Aime type Geo
ehuseyinyigit   0
an hour ago
Source: Turkish First Round 2024
In a scalene triangle $ABC$, let $M$ be the midpoint of side $BC$. Let the line perpendicular to $AC$ at point $C$ intersect $AM$ at $N$. If $(BMN)$ is tangent to $AB$ at $B$, find $AB/MA$.
0 replies
ehuseyinyigit
an hour ago
0 replies
1996 St. Petersburg City Mathematical Olympiad
Sadece_Threv   2
N 2 hours ago by reni_wee
Source: 1996 St. Petersburg City Mathematical Olympiad
Find all positive integers $n$ such that $3^{n-1}+5^{n-1}$ divides $3^{n}+5^{n}$
2 replies
Sadece_Threv
Jul 29, 2024
reni_wee
2 hours ago
IMO 2010 Problem 5
mavropnevma   55
N 2 hours ago by maromex
Each of the six boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$, $B_6$ initially contains one coin. The following operations are allowed

Type 1) Choose a non-empty box $B_j$, $1\leq j \leq 5$, remove one coin from $B_j$ and add two coins to $B_{j+1}$;

Type 2) Choose a non-empty box $B_k$, $1\leq k \leq 4$, remove one coin from $B_k$ and swap the contents (maybe empty) of the boxes $B_{k+1}$ and $B_{k+2}$.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$ become empty, while box $B_6$ contains exactly $2010^{2010^{2010}}$ coins.

Proposed by Hans Zantema, Netherlands
55 replies
mavropnevma
Jul 8, 2010
maromex
2 hours ago
NT ineq: sum 1/a_i < (m+n)/m , {a_1,a_2,...,a_n} subset of {1,2,...,m}
parmenides51   1
N 2 hours ago by DVDTSB
Source: 2006 MOP Homework Blue NT 6
Let $m$ and $n$ be positive integers with $m > n \ge 2$. Set $S =\{1,2,...,m\}$, and set $T = \{a_1,a_2,...,a_n\}$ is a subset of $S$ such that every element of $S$ is not divisible by any pair of distinct elements of $T$. Prove that
$$\frac{1}{a_1}+\frac{1}{a_2}+ ...+ \frac{1}{a_n} < \frac{m+n}{m}$$
1 reply
parmenides51
Apr 12, 2020
DVDTSB
2 hours ago
Never 8
chess64   21
N 3 hours ago by reni_wee
Source: Canada 1970, Problem 10
Given the polynomial \[ f(x)=x^n+a_{1}x^{n-1}+a_{2}x^{n-2}+\cdots+a_{n-1}x+a_n \] with integer coefficients $a_1,a_2,\ldots,a_n$, and given also that there exist four distinct integers $a$, $b$, $c$ and $d$ such that \[ f(a)=f(b)=f(c)=f(d)=5, \] show that there is no integer $k$ such that $f(k)=8$.
21 replies
chess64
May 14, 2006
reni_wee
3 hours ago
old and easy imo inequality
Valentin Vornicu   215
N 3 hours ago by cubres
Source: IMO 2000, Problem 2, IMO Shortlist 2000, A1
Let $ a, b, c$ be positive real numbers so that $ abc = 1$. Prove that
\[ \left( a - 1 + \frac 1b \right) \left( b - 1 + \frac 1c \right) \left( c - 1 + \frac 1a \right) \leq 1.
\]
215 replies
Valentin Vornicu
Oct 24, 2005
cubres
3 hours ago
Weighted graph problem
egxa   1
N Apr 21, 2025 by internationalnick123456
Source: All Russian 2025 10.4
In the plane, $10^6$ points are marked, no three of which are collinear. All possible segments between them are drawn. Grisha assigned to each drawn segment a real number with absolute value no greater than $1$. For every group of $6$ marked points, he calculated the sum of the numbers on all $15$ connecting segments. It turned out that the absolute value of each such sum is at least \(C\), and there are both positive and negative such sums. What is the maximum possible value of \(C\)?
1 reply
egxa
Apr 18, 2025
internationalnick123456
Apr 21, 2025
Weighted graph problem
G H J
G H BBookmark kLocked kLocked NReply
Source: All Russian 2025 10.4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
egxa
210 posts
#1
Y by
In the plane, $10^6$ points are marked, no three of which are collinear. All possible segments between them are drawn. Grisha assigned to each drawn segment a real number with absolute value no greater than $1$. For every group of $6$ marked points, he calculated the sum of the numbers on all $15$ connecting segments. It turned out that the absolute value of each such sum is at least \(C\), and there are both positive and negative such sums. What is the maximum possible value of \(C\)?
This post has been edited 2 times. Last edited by egxa, Apr 21, 2025, 7:22 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
internationalnick123456
134 posts
#2
Y by
Claim. There exists $7$ points such that the sums corr. to $6$ among these points attain both positive and negative values.
Proof. Notice that from any group of $6$ points, we can replace one point at a time with another from the remaining point, and after finitely many steps, we can obtain any group of $6$ points. By continuity, we conclude our claim.
Now, denote the $7$ points as $A_1, A_2, \ldots, A_7$, and let $S_i$ be the sum corresponding to the subset of $6$ points excluding $A_i$.
Wlog, assume $S_1, \ldots, S_k > 0$ and $S_{k+1}, \ldots, S_7 < 0$.
Let $X,Y,Z$ be the sum over all segments $A_iA_j$ with: $1\leq i<j\leq k, 1\leq i\leq k<j\leq 7, k<i<j\leq 7$, respectively.
Then we have $$kC\leq S(A_1)+\cdots +S(A_k)= (k-2)X + (k-1)Y + kZ\quad(1)$$$$-(7-k)C\geq S(A_{k+1})+\cdots + S(A_7)=(7-k)X + (6-k)Y + (5-k)Z\quad(2)$$
Considering $(7-k)\times (1) - (k-2)\times (2)$, we get $$(7-k)(2k-2)C\leq 5Y + 10Z\leq 5k(7-k)+5(7-k)(6-k)=30(7-k)\Rightarrow C\leq \dfrac{15}{k-1}$$By switching the roles of positive and negative, we also get $C\leq \dfrac{15}{6-k}$
Moreover, considering $(6-k)\times (1) - (k-1)\times (2)$ we have $C(14k-2k^2-7)\leq 5(Z-X)\leq 5(21-7k + k^2)$.
If $k\leq 2$ or $k\geq 5$ then $C\leq \min\{\dfrac{15}{k-1},\dfrac{15}{6-k}\}\leq \dfrac{15}{4}$.
If $k\in\{3,4\}$ then $C\leq \dfrac{45}{17}< \dfrac{15}{4}$.
Hence, in all cases, we conclude $C\leq \dfrac{15}{4}$.
To construct such a configuration that attains the maximum, consider two points $A,B$, and assign $1$ to all segments involving either $A$ or $B$, and $-7/8$ to all remaining segments. In this construction, the sum over any $6$-point subset is exactly $15/4$.
Thus, $C_{\max}=\dfrac{15}{4}$.
This post has been edited 1 time. Last edited by internationalnick123456, Apr 21, 2025, 12:43 PM
Z K Y
N Quick Reply
G
H
=
a