Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Inspired by lbh_qys.
sqing   3
N 11 minutes ago by lbh_qys
Source: Own
Let $ a,b>0   $ . Prove that
$$ \frac{a}{a^2+a +b+1}+ \frac{b}{b^2+a +b+1}  \leq  \frac{1}{2} $$$$ \frac{a}{a^2+ab+a+b+1}+ \frac{b}{b^2+ab+a+b+1} \leq   \sqrt 2-1  $$$$\frac{a}{a^2+ab+a+1}+ \frac{b}{b^2+ab+b+1} \leq  \frac{2(2\sqrt 2-1)}{7} $$$$\frac{a}{a^2+ab+b+1}+ \frac{b}{b^2+ab+a+1} \leq  \frac{2(2\sqrt 2-1)}{7} $$
3 replies
sqing
3 hours ago
lbh_qys
11 minutes ago
Additive set with special property
the_universe6626   1
N 11 minutes ago by jasperE3
Source: Janson MO 1 P2
Let $S$ be a nonempty set of positive integers such that:
$\bullet$ if $m,n\in S$ then $m+n\in S$.
$\bullet$ for any prime $p$, there exists $x\in S$ such that $p\nmid x$.
Prove that the set of all positive integers not in $S$ is finite.

(Proposed by cknori)
1 reply
the_universe6626
Feb 21, 2025
jasperE3
11 minutes ago
ISI UGB 2025 P4
SomeonecoolLovesMaths   8
N 20 minutes ago by chakrabortyahan
Source: ISI UGB 2025 P4
Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the period of $z$. Determine the total number of points in $S^1$ of period $2025$.
(Hint : $2025 = 3^4 \times 5^2$)
8 replies
+1 w
SomeonecoolLovesMaths
Sunday at 11:24 AM
chakrabortyahan
20 minutes ago
So Many Terms
oVlad   7
N an hour ago by NuMBeRaToRiC
Source: KöMaL A. 765
Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the following equality for all $x,y\in\mathbb{R}$ \[f(x)f(y)-f(x-1)-f(y+1)=f(xy)+2x-2y-4.\]Proposed by Dániel Dobák, Budapest
7 replies
oVlad
Mar 20, 2022
NuMBeRaToRiC
an hour ago
Cauchy like Functional Equation
ZETA_in_olympiad   3
N an hour ago by jasperE3
Find all functions $f:\bf R^{\geq 0}\to R$ such that $$f(x^2)+f(y^2)=f\left (\dfrac{x^2y^2-2xy+1}{x^2+2xy+y^2}\right)$$for all $x,y>0$ and $xy>1.$
3 replies
ZETA_in_olympiad
Aug 20, 2022
jasperE3
an hour ago
special polynomials and probability
harazi   12
N an hour ago by MathLuis
Source: USA TST 2005, Problem 3, created by Harazi and Titu
We choose random a unitary polynomial of degree $n$ and coefficients in the set $1,2,...,n!$. Prove that the probability for this polynomial to be special is between $0.71$ and $0.75$, where a polynomial $g$ is called special if for every $k>1$ in the sequence $f(1), f(2), f(3),...$ there are infinitely many numbers relatively prime with $k$.
12 replies
harazi
Jul 14, 2005
MathLuis
an hour ago
Hard to approach it !
BogG   131
N 2 hours ago by Giant_PT
Source: Swiss Imo Selection 2006
Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.
131 replies
BogG
May 25, 2006
Giant_PT
2 hours ago
3-var inequality
sqing   2
N 3 hours ago by sqing
Source: Own
Let $ a,b,c>0 $ and $\frac{1}{a+1}+ \frac{1}{b+1}+\frac{1}{c+1}   \geq \frac{a+b +c}{2}   $ . Prove that
$$ \frac{1}{a+2}+ \frac{1}{b+2} + \frac{1}{c+2}\geq1$$
2 replies
sqing
4 hours ago
sqing
3 hours ago
2-var inequality
sqing   4
N 3 hours ago by sqing
Source: Own
Let $ a,b>0   $ . Prove that
$$\frac{a}{a^2+b+1}+ \frac{b}{b^2+a+1} \leq  \frac{2}{3} $$Thank lbh_qys.
4 replies
sqing
4 hours ago
sqing
3 hours ago
Combinatorics from EGMO 2018
BarishNamazov   27
N 3 hours ago by HamstPan38825
Source: EGMO 2018 P3
The $n$ contestant of EGMO are named $C_1, C_2, \cdots C_n$. After the competition, they queue in front of the restaurant according to the following rules.
[list]
[*]The Jury chooses the initial order of the contestants in the queue.
[*]Every minute, the Jury chooses an integer $i$ with $1 \leq i \leq n$.
[list]
[*]If contestant $C_i$ has at least $i$ other contestants in front of her, she pays one euro to the Jury and moves forward in the queue by exactly $i$ positions.
[*]If contestant $C_i$ has fewer than $i$ other contestants in front of her, the restaurant opens and process ends.
[/list]
[/list]
[list=a]
[*]Prove that the process cannot continue indefinitely, regardless of the Jury’s choices.
[*]Determine for every $n$ the maximum number of euros that the Jury can collect by cunningly choosing the initial order and the sequence of moves.
[/list]
27 replies
BarishNamazov
Apr 11, 2018
HamstPan38825
3 hours ago
Do you have any idea why they all call their problems' characters "Mykhailo"???
mshtand1   1
N 3 hours ago by sarjinius
Source: Ukrainian Mathematical Olympiad 2025. Day 2, Problem 10.7
In a row, $1000$ numbers \(2\) and $2000$ numbers \(-1\) are written in some order.
Mykhailo counted the number of groups of adjacent numbers, consisting of at least two numbers, whose sum equals \(0\).
(a) Find the smallest possible value of this number.
(b) Find the largest possible value of this number.

Proposed by Anton Trygub
1 reply
mshtand1
Mar 14, 2025
sarjinius
3 hours ago
Polynomial divisible by x^2+1
Miquel-point   2
N 4 hours ago by lksb
Source: Romanian IMO TST 1981, P1 Day 1
Consider the polynomial $P(X)=X^{p-1}+X^{p-2}+\ldots+X+1$, where $p>2$ is a prime number. Show that if $n$ is an even number, then the polynomial \[-1+\prod_{k=0}^{n-1} P\left(X^{p^k}\right)\]is divisible by $X^2+1$.

Mircea Becheanu
2 replies
Miquel-point
Apr 6, 2025
lksb
4 hours ago
D1030 : An inequalitie
Dattier   1
N 4 hours ago by lbh_qys
Source: les dattes à Dattier
Let $0<a<b<c<d$ reals, and $n \in \mathbb N^*$.

Is it true that $a^n(b-a)+b^n(c-b)+c^n(d-c) \leq \dfrac {d^{n+1}}{n+1}$ ?
1 reply
1 viewing
Dattier
Yesterday at 7:17 PM
lbh_qys
4 hours ago
IGO 2021 P1
SPHS1234   14
N 5 hours ago by LeYohan
Source: igo 2021 intermediate p1
Let $ABC$ be a triangle with $AB = AC$. Let $H$ be the orthocenter of $ABC$. Point
$E$ is the midpoint of $AC$ and point $D$ lies on the side $BC$ such that $3CD = BC$. Prove that
$BE \perp HD$.

Proposed by Tran Quang Hung - Vietnam
14 replies
SPHS1234
Dec 30, 2021
LeYohan
5 hours ago
Interesting F.E
Jackson0423   13
N Apr 22, 2025 by Jackson0423
Show that there does not exist a function
\[
f : \mathbb{R}^+ \to \mathbb{R}
\]satisfying the condition that for all \( x, y \in \mathbb{R}^+ \),
\[
f(x + y^2) \geq f(x) + y.
\]

~Korea 2017 P7
13 replies
Jackson0423
Apr 18, 2025
Jackson0423
Apr 22, 2025
Interesting F.E
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jackson0423
96 posts
#1
Y by
Show that there does not exist a function
\[
f : \mathbb{R}^+ \to \mathbb{R}
\]satisfying the condition that for all \( x, y \in \mathbb{R}^+ \),
\[
f(x + y^2) \geq f(x) + y.
\]

~Korea 2017 P7
This post has been edited 3 times. Last edited by Jackson0423, Apr 21, 2025, 3:23 PM
Reason: Sorry guys..
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jackson0423
96 posts
#2
Y by
R+ is the set of non-negative integers
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11333 posts
#3 • 5 Y
Y by kamatadu, Double07, Sedro, aidan0626, akliu
Jackson0423 wrote:
R+ is the set of non-negative integers

I love when $\mathbb R^+$ is the set of nonnegative integers
These might be relevant: (current formulation is trivial and I don't think the actual Korea 2017 P7)
https://artofproblemsolving.com/community/c6h1543916p9356553
https://artofproblemsolving.com/community/c6h1882632p12816244
This post has been edited 3 times. Last edited by jasperE3, Apr 21, 2025, 10:41 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
skyerzym27
55 posts
#4
Y by
How about $x=\frac{1}{2}$ and $y=\frac{1}{4}$?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jackson0423
96 posts
#5
Y by
hmm..contradiction
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GreekIdiot
231 posts
#6
Y by
Jackson0423 wrote:
R+ is the set of non-negative integers

oh my
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Davdav1232
43 posts
#8
Y by
For R+ being the nonnegative integers, f(x)=x^2 works.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CHESSR1DER
58 posts
#9
Y by
$(x^2+y)^2\geq x^2+y$ is not always true. Check $x=y=0.1$.
This post has been edited 2 times. Last edited by CHESSR1DER, Apr 20, 2025, 7:20 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Sedro
5848 posts
#10
Y by
Jackson0423 wrote:
R+ is the set of non-negative integers
That's a new one LOL

@above, how are those counterexamples? $(0^2+0)^2 = 0^2+0$ and $(1^2+1)^2>1^2+1$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jackson0423
96 posts
#11
Y by
if we plug in y=x-x^2...
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jackson0423
96 posts
#12
Y by
Sorry guys I wrote wrong..
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11333 posts
#13
Y by
Jackson0423 wrote:
Sorry guys I wrote wrong..

Then see the first link I provided above in post #3.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ja.
22 posts
#14 • 2 Y
Y by aidan0626, Sedro
ah yes R+ is the set of non-negative integers
Solution
This post has been edited 1 time. Last edited by ja., Apr 22, 2025, 2:33 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jackson0423
96 posts
#15
Y by
Oh Yes that's right
Z K Y
N Quick Reply
G
H
=
a