Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Inequality
SunnyEvan   8
N a few seconds ago by arqady
Let $a$, $b$, $c$ be non-negative real numbers, no two of which are zero. Prove that :
$$ \sum \frac{3ab-2bc+3ca}{3b^2+bc+3c^2} \geq \frac{12}{7}$$
8 replies
SunnyEvan
Apr 1, 2025
arqady
a few seconds ago
Inequality conjecture
RainbowNeos   2
N 4 minutes ago by RainbowNeos
Show (or deny) that there exists an absolute constant $C>0$ that, for all $n$ and $n$ positive real numbers $x_i ,1\leq i \leq n$, there is
\[\sum_{i=1}^n \frac{x_i^2}{\sum_{j=1}^i x_j}\geq C \ln n\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}\]
2 replies
RainbowNeos
May 29, 2025
RainbowNeos
4 minutes ago
2- player game on a strip of n squares with two game pieces
parmenides51   2
N 6 minutes ago by Gggvds1
Source: 2023 Austrian Mathematical Olympiad, Junior Regional Competition , Problem 3
Alice and Bob play a game on a strip of $n \ge  3$ squares with two game pieces. At the beginning, Alice’s piece is on the first square while Bob’s piece is on the last square. The figure shows the starting position for a strip of $ n = 7$ squares.
IMAGE
The players alternate. In each move, they advance their own game piece by one or two squares in the direction of the opponent’s piece. The piece has to land on an empty square without jumping over the opponent’s piece. Alice makes the first move with her own piece. If a player cannot move, they lose.

For which $n$ can Bob ensure a win no matter how Alice plays?
For which $n$ can Alice ensure a win no matter how Bob plays?

(Karl Czakler)
2 replies
parmenides51
Mar 26, 2024
Gggvds1
6 minutes ago
Incenters and Circles
rkm0959   6
N 10 minutes ago by happypi31415
Source: Korean National Junior Olympiad Problem 1
In a triangle $\triangle ABC$ with incenter $I$,
Let $D$ = $AI$ $\cap$ $BC$
$E$ = incenter of $\triangle ABD$
$F$ = incenter of $\triangle ACD$
$P$ = intersection of $\odot BCE$ and $\overline {ED}$
$Q$ = intersection of $\odot BCF$ and $\overline {FD}$
$M$ = midpoint of $\overline {BC}$

Prove that $D, M, P, Q$ concycle
6 replies
+1 w
rkm0959
Nov 2, 2014
happypi31415
10 minutes ago
Question on Balkan SL
Fmimch   4
N 28 minutes ago by BreezeCrowd
Does anyone know where to find the Balkan MO Shortlist 2024? If you have the file, could you send in this thread? Thank you!
4 replies
Fmimch
Apr 30, 2025
BreezeCrowd
28 minutes ago
Rays, incircle, angles...
mathisreal   3
N an hour ago by Assassino9931
Source: Rioplatense L-3 2022 #4
Let $ABC$ be a triangle with incenter $I$. Let $D$ be the point of intersection between the incircle and the side $BC$, the points $P$ and $Q$ are in the rays $IB$ and $IC$, respectively, such that $\angle IAP=\angle CAD$ and $\angle IAQ=\angle BAD$. Prove that $AP=AQ$.
3 replies
mathisreal
Dec 13, 2022
Assassino9931
an hour ago
Wordy Geometry in Taiwan TST
ckliao914   9
N an hour ago by Scilyse
Source: 2023 Taiwan TST Round 3 Mock Exam 6
Given triangle $ABC$ with $A$-excenter $I_A$, the foot of the perpendicular from $I_A$ to $BC$ is $D$. Let the midpoint of segment $I_AD$ be $M$, $T$ lies on arc $BC$(not containing $A$) satisfying $\angle BAT=\angle DAC$, $I_AT$ intersects the circumcircle of $ABC$ at $S\neq T$. If $SM$ and $BC$ intersect at $X$, the perpendicular bisector of $AD$ intersects $AC,AB$ at $Y,Z$ respectively, prove that $AX,BY,CZ$ are concurrent.
9 replies
ckliao914
Apr 29, 2023
Scilyse
an hour ago
Converse of a classic orthocenter problem
spartacle   43
N 4 hours ago by ihategeo_1969
Source: USA TSTST 2020 Problem 6
Let $A$, $B$, $C$, $D$ be four points such that no three are collinear and $D$ is not the orthocenter of $ABC$. Let $P$, $Q$, $R$ be the orthocenters of $\triangle BCD$, $\triangle CAD$, $\triangle ABD$, respectively. Suppose that the lines $AP$, $BQ$, $CR$ are pairwise distinct and are concurrent. Show that the four points $A$, $B$, $C$, $D$ lie on a circle.

Andrew Gu
43 replies
spartacle
Dec 14, 2020
ihategeo_1969
4 hours ago
Symmetric points part 2
CyclicISLscelesTrapezoid   22
N 4 hours ago by ihategeo_1969
Source: USA TSTST 2022/6
Let $O$ and $H$ be the circumcenter and orthocenter, respectively, of an acute scalene triangle $ABC$. The perpendicular bisector of $\overline{AH}$ intersects $\overline{AB}$ and $\overline{AC}$ at $X_A$ and $Y_A$ respectively. Let $K_A$ denote the intersection of the circumcircles of triangles $OX_AY_A$ and $BOC$ other than $O$.

Define $K_B$ and $K_C$ analogously by repeating this construction two more times. Prove that $K_A$, $K_B$, $K_C$, and $O$ are concyclic.

Hongzhou Lin
22 replies
CyclicISLscelesTrapezoid
Jun 27, 2022
ihategeo_1969
4 hours ago
Cyclic Quad. and Intersections
Thelink_20   11
N 5 hours ago by americancheeseburger4281
Source: My Problem
Let $ABCD$ be a quadrilateral inscribed in a circle $\Gamma$. Let $AC\cap BD=E$, $AB\cap CD=F$, $(AEF)\cap\Gamma=X$, $(BEF)\cap\Gamma=Y$, $(CEF)\cap\Gamma=Z$, $(DEF)\cap\Gamma=W$, $XZ\cap YW=M$, $XY\cap ZW=N$. Prove that $MN$ lies over $EF$.
11 replies
Thelink_20
Oct 29, 2024
americancheeseburger4281
5 hours ago
PE is bisector of BPC
goldeneagle   44
N 5 hours ago by cursed_tangent1434
Source: Iran TST 2012 -first day- problem 2
Consider $\omega$ is circumcircle of an acute triangle $ABC$. $D$ is midpoint of arc $BAC$ and $I$ is incenter of triangle $ABC$. Let $DI$ intersect $BC$ in $E$ and $\omega$ for second time in $F$. Let $P$ be a point on line $AF$ such that $PE$ is parallel to $AI$. Prove that $PE$ is bisector of angle $BPC$.

Proposed by Mr.Etesami
44 replies
goldeneagle
Apr 23, 2012
cursed_tangent1434
5 hours ago
help me~~
Imshyso   1
N Today at 9:09 AM by Royal_mhyasd
Given triangle ABC inscribed in (O) with orthocenter H. Let K be the midpoint of AH. Take E,F on AC, AB so that BKE=CKF=90. Prove that E,O,F are collinear.
1 reply
Imshyso
Today at 8:10 AM
Royal_mhyasd
Today at 9:09 AM
Isosceles Triangle Geo
oVlad   5
N Today at 8:22 AM by Tamam
Source: Romania Junior TST 2025 Day 1 P2
Consider the isosceles triangle $ABC$ with $\angle A>90^\circ$ and the circle $\omega$ of radius $AC$ centered at $A.$ Let $M$ be the midpoint of $AC.$ The line $BM$ intersects $\omega$ a second time at $D.$ Let $E$ be a point on $\omega$ such that $BE\perp AC.$ Let $N$ be the intersection of $DE$ and $AC.$ Prove that $AN=2\cdot AB.$
5 replies
oVlad
Apr 12, 2025
Tamam
Today at 8:22 AM
Easy Geometry
rkm0959   13
N Today at 8:15 AM by Rounak_iitr
Source: 2015 Korean Mathematical Olympiad P2
Let the circumcircle of $\triangle ABC$ be $\omega$. A point $D$ lies on segment $BC$, and $E$ lies on segment $AD$. Let ray $AD \cap \omega = F$. A point $M$, which lies on $\omega$, bisects $AF$ and it is on the other side of $C$ with respect to $AF$. Ray $ME \cap \omega = G$, ray $GD \cap \omega = H$, and $MH \cap AD = K$. Prove that $B, E, C, K$ are cyclic.
13 replies
rkm0959
Nov 1, 2015
Rounak_iitr
Today at 8:15 AM
2009 PUMaC Geometry A6/B8: solid with 4 triangles, hexagons
PUMACuploader   1
N Feb 16, 2012 by professordad
Consider the solid with 4 triangles and 4 regular hexagons as faces, where each triangle borders 3 hexagons, and all the sides are of length 1. Compute the square of the volume of the solid. Express your result in reduced fraction and concatenate the numerator with the denominator (e.g., if you think that the square is $\frac{1734}{274}$, then you would submit 1734274).
1 reply
PUMACuploader
Sep 2, 2011
professordad
Feb 16, 2012
2009 PUMaC Geometry A6/B8: solid with 4 triangles, hexagons
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PUMACuploader
106 posts
#1 • 2 Y
Y by Adventure10, Mango247
Consider the solid with 4 triangles and 4 regular hexagons as faces, where each triangle borders 3 hexagons, and all the sides are of length 1. Compute the square of the volume of the solid. Express your result in reduced fraction and concatenate the numerator with the denominator (e.g., if you think that the square is $\frac{1734}{274}$, then you would submit 1734274).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
professordad
4549 posts
#2 • 2 Y
Y by Adventure10, Mango247
This contest problem needs a solution.
Z K Y
N Quick Reply
G
H
=
a