Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Japan MO Finals 2021 P4
maple116   2
N 9 minutes ago by Gauler
Source: Japan MO Finals 2021 P4
Let $a_1,a_2,\dots,a_{2021}$ be $2021$ integers which satisfy
\[ a_{n+5}+a_n>a_{n+2}+a_{n+3}\]for all integers $n=1,2,\dots,2016$. Find the minimum possible value of the difference between the maximum value and the minimum value among $a_1,a_2,\dots,a_{2021}$.
2 replies
1 viewing
maple116
Feb 14, 2021
Gauler
9 minutes ago
Tangents to a cyclic quadrilateral
v_Enhance   23
N 13 minutes ago by Ilikeminecraft
Source: ELMO Shortlist 2013: Problem G9, by Allen Liu
Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$.

Proposed by Allen Liu
23 replies
v_Enhance
Jul 23, 2013
Ilikeminecraft
13 minutes ago
Strange angle condition and concyclic points
lminsl   128
N 16 minutes ago by Giant_PT
Source: IMO 2019 Problem 2
In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$.

Prove that points $P,Q,P_1$, and $Q_1$ are concyclic.

Proposed by Anton Trygub, Ukraine
128 replies
lminsl
Jul 16, 2019
Giant_PT
16 minutes ago
Two lines meet at circle
mathpk   51
N 26 minutes ago by Ilikeminecraft
Source: APMO 2008 problem 3
Let $ \Gamma$ be the circumcircle of a triangle $ ABC$. A circle passing through points $ A$ and $ C$ meets the sides $ BC$ and $ BA$ at $ D$ and $ E$, respectively. The lines $ AD$ and $ CE$ meet $ \Gamma$ again at $ G$ and $ H$, respectively. The tangent lines of $ \Gamma$ at $ A$ and $ C$ meet the line $ DE$ at $ L$ and $ M$, respectively. Prove that the lines $ LH$ and $ MG$ meet at $ \Gamma$.
51 replies
mathpk
Mar 22, 2008
Ilikeminecraft
26 minutes ago
Hard geometry
Lukariman   5
N 29 minutes ago by Lukariman
Given circle (O) and chord AB with different diameters. The tangents of circle (O) at A and B intersect at point P. On the small arc AB, take point C so that triangle CAB is not isosceles. The lines CA and BP intersect at D, BC and AP intersect at E. Prove that the centers of the circles circumscribing triangles ACE, BCD and OPC are collinear.
5 replies
Lukariman
Yesterday at 4:28 AM
Lukariman
29 minutes ago
P,Q,B are collinear
MNJ2357   29
N an hour ago by cj13609517288
Source: 2020 Korea National Olympiad P2
$H$ is the orthocenter of an acute triangle $ABC$, and let $M$ be the midpoint of $BC$. Suppose $(AH)$ meets $AB$ and $AC$ at $D,E$ respectively. $AH$ meets $DE$ at $P$, and the line through $H$ perpendicular to $AH$ meets $DM$ at $Q$. Prove that $P,Q,B$ are collinear.
29 replies
MNJ2357
Nov 21, 2020
cj13609517288
an hour ago
Factorising and prime numbers...
Sadigly   5
N 2 hours ago by ektorasmiliotis
Source: Azerbaijan Senior MO 2025 P4
Prove that for any $p>2$ prime number, there exists only one positive number $n$ that makes the equation $n^2-np$ a perfect square of a positive integer
5 replies
Sadigly
May 8, 2025
ektorasmiliotis
2 hours ago
IMO 2011 Problem 3
Amir Hossein   85
N 2 hours ago by NerdyNashville
Let $f : \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies
\[f(x + y) \leq yf(x) + f(f(x))\]
for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \leq 0$.

Proposed by Igor Voronovich, Belarus
85 replies
1 viewing
Amir Hossein
Jul 18, 2011
NerdyNashville
2 hours ago
Angle Relationships in Triangles
steven_zhang123   0
3 hours ago
In $\triangle ABC$, $AB > AC$. The internal angle bisector of $\angle BAC$ and the external angle bisector of $\angle BAC$ intersect the ray $BC$ at points $D$ and $E$, respectively. Given that $CE - CD = 2AC$, prove that $\angle ACB = 2\angle ABC$.
0 replies
steven_zhang123
3 hours ago
0 replies
acute triangle and its circumcenter and orthocenter
N.T.TUAN   6
N 3 hours ago by MathLuis
Source: USA TST 2005, Problem 2
Let $A_{1}A_{2}A_{3}$ be an acute triangle, and let $O$ and $H$ be its circumcenter and orthocenter, respectively. For $1\leq i \leq 3$, points $P_{i}$ and $Q_{i}$ lie on lines $OA_{i}$ and $A_{i+1}A_{i+2}$ (where $A_{i+3}=A_{i}$), respectively, such that $OP_{i}HQ_{i}$ is a parallelogram. Prove that
\[\frac{OQ_{1}}{OP_{1}}+\frac{OQ_{2}}{OP_{2}}+\frac{OQ_{3}}{OP_{3}}\geq 3.\]
6 replies
N.T.TUAN
May 14, 2007
MathLuis
3 hours ago
Nice one
imnotgoodatmathsorry   3
N 3 hours ago by Bergo1305
Source: Own
With $x,y,z >0$.Prove that: $\frac{xy}{4y+4z+x} + \frac{yz}{4z+4x+y} +\frac{zx}{4x+4y+z} \le \frac{x+y+z}{9}$
3 replies
imnotgoodatmathsorry
May 2, 2025
Bergo1305
3 hours ago
Imtersecting two regular pentagons
Miquel-point   2
N 4 hours ago by ohiorizzler1434
Source: KoMaL B. 5093
The intersection of two congruent regular pentagons is a decagon with sides of $a_1,a_2,\ldots ,a_{10}$ in this order. Prove that
\[a_1a_3+a_3a_5+a_5a_7+a_7a_9+a_9a_1=a_2a_4+a_4a_6+a_6a_8+a_8a_{10}+a_{10}a_2.\]
2 replies
Miquel-point
Yesterday at 6:27 PM
ohiorizzler1434
4 hours ago
monving balls in 2018 boxes
parmenides51   1
N 4 hours ago by venhancefan777
Source: 1st Mathematics Regional Olympiad of Mexico Northwest 2018 P1
There are $2018$ boxes $C_1$, $C_2$, $C_3$,..,$C_{2018}$. The $n$-th box $C_n$ contains $n$ balls.
A move consists of the following steps:
a) Choose an integer $k$ greater than $1$ and choose $m$ a multiple of $k$.
b) Take a ball from each of the consecutive boxes $C_{m-1}$, $C_m$, $C_{m+1}$ and move the $3$ balls to the box $C_{m+k}$.
With these movements, what is the largest number of balls we can get in the box $2018$?
1 reply
parmenides51
Sep 6, 2022
venhancefan777
4 hours ago
inequality
danilorj   0
5 hours ago
Let $a, b, c$ be nonnegative real numbers such that $a + b + c = 3$. Prove that
\[
\frac{a}{4 - b} + \frac{b}{4 - c} + \frac{c}{4 - a} + \frac{1}{16}(1 - a)^2(1 - b)^2(1 - c)^2 \leq 1,
\]and determine all such triples $(a, b, c)$ where the equality holds.
0 replies
danilorj
5 hours ago
0 replies
Turkey Junior Olympiad 2003, Part II - P1
xeroxia   2
N Aug 17, 2019 by BarisKoyuncu
Let $ABCD$ be a cyclic quadrilateral, and $E$ be the intersection of its diagonals. If $m(\widehat{ADB}) = 22.5^\circ$, $|BD|=6$, and $|AD|\cdot|CE|=|DC|\cdot|AE|$, find the area of the quadrilateral $ABCD$.
2 replies
xeroxia
Jan 20, 2013
BarisKoyuncu
Aug 17, 2019
Turkey Junior Olympiad 2003, Part II - P1
G H J
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
xeroxia
1140 posts
#1 • 1 Y
Y by Adventure10
Let $ABCD$ be a cyclic quadrilateral, and $E$ be the intersection of its diagonals. If $m(\widehat{ADB}) = 22.5^\circ$, $|BD|=6$, and $|AD|\cdot|CE|=|DC|\cdot|AE|$, find the area of the quadrilateral $ABCD$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tk1
937 posts
#2 • 1 Y
Y by Adventure10
Let $CD,DA,AB,BC$ be denoted by $a,b,c,d,$ respectively. The condition $AD\cdot CE=DC\cdot AE$ implies that $DB$ is the bisector of $\angle ADC.$ Therefore, $\angle ADC=45^\circ,$ $\angle ABC=135^\circ,$ and $c=d.$ Using the law of cosines in $\triangle ABD,$ and $\triangle CBD,$ we see that $a$ and $b$ are the solutions of the quadratic $x^2-12x\cos 22.5^\circ+36-c^2=0,$ and therefore $ab=36-c^2.$ However, the area of the quadrilateral is given by ${1\over 2}\cdot (ab+cd)\cdot \sin 45^\circ={1\over 2}\cdot (36-c^2+c^2)\sin 45^\circ=9\sqrt{2}.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BarisKoyuncu
577 posts
#3 • 2 Y
Y by electrovector, Adventure10
I hope solution is true
Attachments:
Z K Y
N Quick Reply
G
H
=
a