Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Jun 2, 2025
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Jun 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Bugs Bunny at it again
Rijul saini   7
N a few seconds ago by ihatemath123
Source: LMAO 2025 Day 2 Problem 1
Bugs Bunny wants to choose a number $k$ such that every collection of $k$ consecutive positive integers contains an integer whose sum of digits is divisible by $2025$.

Find the smallest positive integer $k$ for which he can do this, or prove that none exist.

Proposed by Saikat Debnath and MV Adhitya
7 replies
1 viewing
Rijul saini
Wednesday at 7:01 PM
ihatemath123
a few seconds ago
IMO ShortList 2002, number theory problem 6
orl   34
N 9 minutes ago by lksb
Source: IMO ShortList 2002, number theory problem 6
Find all pairs of positive integers $m,n\geq3$ for which there exist infinitely many positive integers $a$ such that \[ \frac{a^m+a-1}{a^n+a^2-1}  \] is itself an integer.

Laurentiu Panaitopol, Romania
34 replies
orl
Sep 28, 2004
lksb
9 minutes ago
random combo geo
DottedCaculator   15
N 10 minutes ago by heheman
Source: USA TST 2024/4
Find all integers $n \geq 2$ for which there exists a sequence of $2n$ pairwise distinct points $(P_1, \dots, P_n, Q_1, \dots, Q_n)$ in the plane satisfying the following four conditions: [list=i] [*]no three of the $2n$ points are collinear;
[*] $P_iP_{i+1} \ge 1$ for all $i = 1, 2, \dots ,n$, where $P_{n+1}=P_1$;
[*] $Q_iQ_{i+1} \ge 1$ for all $i = 1, 2, \dots, n$, where $Q_{n+1} = Q_1$; and
[*] $P_iQ_j \le 1$ for all $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, n$.[/list]

Ray Li
15 replies
DottedCaculator
Jan 15, 2024
heheman
10 minutes ago
Strange Inequality
S.Ragnork1729   21
N 11 minutes ago by heheman
Source: INMO P4
Let $n\ge 3$ be a positive integer. Find the largest real number $t_n$ as a function of $n$ such that the inequality
\[\max\left(|a_1+a_2|, |a_2+a_3|, \dots ,|a_{n-1}+a_{n}| , |a_n+a_1|\right) \ge t_n \cdot \max(|a_1|,|a_2|, \dots ,|a_n|)\]holds for all real numbers $a_1, a_2, \dots , a_n$ .

Proposed by Rohan Goyal and Rijul Saini
21 replies
1 viewing
S.Ragnork1729
Jan 19, 2025
heheman
11 minutes ago
Weighted Blocks
ilovemath04   53
N 21 minutes ago by ezpotd
Source: ISL 2019 C2
You are given a set of $n$ blocks, each weighing at least $1$; their total weight is $2n$. Prove that for every real number $r$ with $0 \leq r \leq 2n-2$ you can choose a subset of the blocks whose total weight is at least $r$ but at most $r + 2$.
53 replies
ilovemath04
Sep 22, 2020
ezpotd
21 minutes ago
3-var inequality
sqing   1
N 29 minutes ago by sqing
Source: Own
Let $ a,b,c>0,a+b+c=5 $ and $ abc=3. $ Prove that
$$a^2+b^2+c^2+2(ab+bc+ca)  \leq25$$$$a^3+b^3+c^3+15 (ab+bc+ca)\leq134$$$$a^2+b^2+c^2+3(ab+bc+ca)  \leq \frac{197+11\sqrt{33}}{8}$$$$a^3+b^3+c^3+16 (ab+bc+ca) \leq \frac{1069+11\sqrt{33}}{8}$$
1 reply
1 viewing
sqing
43 minutes ago
sqing
29 minutes ago
NT from Ukrainian TST
mshtand1   22
N 29 minutes ago by cursed_tangent1434
Source: Ukrainian TST for IMO 2021 P4
Initially, some positive integer greater than 1 is written on the board. Every second one erases number $n$ written on the board at this moment and writes number $n + \dfrac{n}{p}$ where $p$ is some prime divisor of $n$ and this process lasts indefinitely. Prove that number $3$ was chosen as a prime number $p$ infinitely many times.
Proposed by Mykhailo Shtandenko
22 replies
mshtand1
May 2, 2021
cursed_tangent1434
29 minutes ago
Cheese??? - I'm definitely doing smth wrong
Sid-darth-vater   2
N 33 minutes ago by Sid-darth-vater
Source: European Girls Math Olympiad 2013/1
The problem is attached. So is my diagram which has a couple of markings on it for clarity :)

So basically, I found a solution which I am 99% confident that I am doing smth wrong, I just can't find the error. Any help would be appreciated!

We claim that triangle $BAC$ is right angled (for clarity, $<BAC = 90$). Define $S$ as a point on line $AC$ such that $SD$ is parallel to $AB$. Additionally, since $BC = DC$, $\triangle BAC \cong \triangle DSC$ meaning $<BAC = <CSD$, $AC = CS$, and $AB = SD$. Also, since $BE = AD$, by SSS, we have $\triangle BEA \cong DAS$ meaning $\angle EAB= \angle CSD$. Since $\angle EAS + \angle BAC = 180$, we have $2\angle ASD = 180$ or $\angle ASD = \angle BAC = 90$ and we are done.
2 replies
Sid-darth-vater
Yesterday at 8:39 PM
Sid-darth-vater
33 minutes ago
Can Euclid solve this geo ?
S.Ragnork1729   33
N an hour ago by heheman
Source: INMO 2025 P3
Euclid has a tool called splitter which can only do the following two types of operations :
• Given three non-collinear marked points $X,Y,Z$ it can draw the line which forms the interior angle bisector of $\angle{XYZ}$.
• It can mark the intersection point of two previously drawn non-parallel lines .
Suppose Euclid is only given three non-collinear marked points $A,B,C$ in the plane . Prove that Euclid can use the splitter several times to draw the centre of circle passing through $A,B$ and $C$.

Proposed by Shankhadeep Ghosh
33 replies
S.Ragnork1729
Jan 19, 2025
heheman
an hour ago
XY is tangent to a fixed circle
a_507_bc   3
N 2 hours ago by lksb
Source: Baltic Way 2022/15
Let $\Omega$ be a circle, and $B, C$ are two fixed points on $\Omega$. Given a third point $A$ on $\Omega$, let $X$ and $Y$ denote the feet of the altitudes from $B$ and $C$, respectively, in the triangle $ABC$. Prove that there exists a fixed circle $\Gamma$ such that $XY$ is tangent to $\Gamma$ regardless of the choice of the point $A$.
3 replies
a_507_bc
Nov 12, 2022
lksb
2 hours ago
One of the lines is tangent
Rijul saini   8
N 2 hours ago by ihategeo_1969
Source: LMAO 2025 Day 2 Problem 2
Let $ABC$ be a scalene triangle with incircle $\omega$. Denote by $N$ the midpoint of arc $BAC$ in the circumcircle of $ABC$, and by $D$ the point where the $A$-excircle touches $BC$. Suppose the circumcircle of $AND$ meets $BC$ again at $P \neq D$ and intersects $\omega$ at two points $X$, $Y$.

Prove that either $PX$ or $PY$ is tangent to $\omega$.

Proposed by Sanjana Philo Chacko
8 replies
Rijul saini
Wednesday at 7:02 PM
ihategeo_1969
2 hours ago
Tricky coloured subgraphs
bomberdoodles   2
N 2 hours ago by bomberdoodles
Consider a graph with nine vertices, with the vertices labelled 1 through 9. An
edge is drawn between each pair of vertices.

Sally picks any edge of her choice, and colours that edge either red or blue. She keeps repeating
this process, choosing any uncoloured edge, and colouring that edge either red or blue.
The only rule is that she is never allowed to colour an edge either red or blue so that one
of these scenarios occurs:

(i) There exist three numbers $a, b, c$, with $1 \le a < b < c \le 9$, for which the edges $ab, bc, ac$ are
all coloured red.

(ii) There exist four numbers $p, q, r, s,$ with $1 \le p < q < r < s \le 9$, for which the edges $pq, pr,
ps, qr, qs, rs$ are all coloured blue.

For example, suppose Sally starts by choosing edges 14 and 34, and colouring both of these
edges red. Then if she picks edge 13, she must colour this edge blue, because she cannot colour
it red.

What is the maximum number of edges that Sally can colour?
2 replies
bomberdoodles
Yesterday at 8:12 PM
bomberdoodles
2 hours ago
x^2+6x+33 is perfect square
Demetres   6
N 3 hours ago by thdwlgh1229
Source: Cyprus 2022 Junior TST-1 Problem 1
Find all integer values of $x$ for which the value of the expression
\[x^2+6x+33\]is a perfect square.
6 replies
Demetres
Feb 21, 2022
thdwlgh1229
3 hours ago
Tricky FE
Rijul saini   12
N 3 hours ago by TestX01
Source: LMAO 2025 Day 1 Problem 1
Let $\mathbb{R}$ denote the set of all real numbers. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that
$$f(xy) + f(f(y)) = f((x + 1)f(y))$$for all real numbers $x$, $y$.

Proposed by MV Adhitya and Kanav Talwar
12 replies
Rijul saini
Wednesday at 6:58 PM
TestX01
3 hours ago
Two circles externally tangent again!
Valentin Vornicu   5
N Jan 20, 2017 by JasperL
Source: Balkan MO 1993, Problem 3
Circles $\mathcal C_1$ and $\mathcal C_2$ with centers $O_1$ and $O_2$, respectively, are externally tangent at point $\lambda$. A circle $\mathcal C$ with center $O$ touches $\mathcal C_1$ at $A$ and $\mathcal C_2$ at $B$ so that the centers $O_1$, $O_2$ lie inside $C$. The common tangent to $\mathcal C_1$ and $\mathcal C_2$ at $\lambda$ intersects the circle $\mathcal C$ at $K$ and $L$. If $D$ is the midpoint of the segment $KL$, show that $\angle O_1OO_2 = \angle ADB$.

Greece
5 replies
Valentin Vornicu
Apr 25, 2006
JasperL
Jan 20, 2017
Two circles externally tangent again!
G H J
Source: Balkan MO 1993, Problem 3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Valentin Vornicu
7301 posts
#1 • 2 Y
Y by Adventure10, Mango247
Circles $\mathcal C_1$ and $\mathcal C_2$ with centers $O_1$ and $O_2$, respectively, are externally tangent at point $\lambda$. A circle $\mathcal C$ with center $O$ touches $\mathcal C_1$ at $A$ and $\mathcal C_2$ at $B$ so that the centers $O_1$, $O_2$ lie inside $C$. The common tangent to $\mathcal C_1$ and $\mathcal C_2$ at $\lambda$ intersects the circle $\mathcal C$ at $K$ and $L$. If $D$ is the midpoint of the segment $KL$, show that $\angle O_1OO_2 = \angle ADB$.

Greece
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sprmnt21
279 posts
#2 • 3 Y
Y by franchester, Adventure10, Mango247
Ase they are radical axes, the tangents to the circles through A, B and C concurr at, let say S. As OD is orthogonal to KL, D and S lie on the same circle through ABO. Then the thesis.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheReds
11 posts
#3 • 3 Y
Y by Adventure10, Mango247, and 1 other user
I think that ${C_1}$ and $C_2$ don't need to be tangent.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
erfan_Ashorion
102 posts
#4 • 2 Y
Y by Adventure10, Mango247
oh..!nice problem!!i just write some hint :lol: i use some lemma that dont need to proof but if you need say :wink:
lemma 1:$A,O_1,O$and$B,O_2,O$and$O_1,O_2,\lambda$are colliner!
lemma 2:$\lambda$ is incenter of triangle $\triangle {ABD}$(for this lemma we have 2 proof by symmedian(my solution :blush: )and harmonic(my friend solution :P )
proof of problem:
$\frac{\angle BDA}{2}+90=\angle {B\lambda A}$(because that $\lambda$is incenter!!)
$\frac{\angle BDA}{2}+90=\angle BOA=\angle O_2OO_1$
now i write a problem that i find it in this problem but it is so easy:))
suppose that $DA$ and $O_1O_2$intersevt each other at $R$proof that $A,B,O_2,R$are on circle:)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NewAlbionAcademy
910 posts
#5 • 2 Y
Y by Adventure10, Mango247
Outline

erfan_Ashorion's problem

Also,erfan_Ashorion, I would like to see a proof for your lemma 2.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JasperL
379 posts
#6 • 2 Y
Y by Adventure10, Mango247
Solution
Z K Y
N Quick Reply
G
H
=
a