ka April Highlights and 2025 AoPS Online Class Information
jlacosta0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.
WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.
Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Intermediate: Grades 8-12
Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Hi!
I'd like to introduce the Bogus Proof Marathon.
In this marathon, simply post a bogus proof that is middle-school level and the next person will find the error. You don't have to post the real solution :P
Use classic Marathon format:
[hide=P#]a1b2c3[/hide][hide=S#]a1b2c3[/hide]
Example posts:
P(x)
:o
----- S(x)
You raised everything to a power of zero, assuming that
Hello! I've just been accepted into Camp Conway, but I'm not sure how popular this camp actually is, given that it's new. Has anyone else applied/has been accepted/is going? (I'm trying to figure out to what degree this acceptance was just lack of qualified applicants, so I can better predict my chances of getting into my preferred math camp.)
I agree with sp0rtman00000;
It will be easier to change it to a second degree polynomial and then use the quadratic formula, which is: (-b+-Sqrt(b^2-4ac))/2a
I agree with sp0rtman00000;
It will be easier to change it to a second degree polynomial and then use the quadratic formula, which is: (-b+-Sqrt(b^2-4ac))/2a
That's what I did, except instead of using the quadratic formula or factoring I used Po-Shen Loh's recently(ish) found method which combines vieta's and some common sense.
by 1434 number theory lemma. Now, define a sigma number from the set and such that such that any number can now be expressed as ultra-complex, e.g. . Now, using the chicken jockey steve theorem, we find there are distinct solutions. These solutions actually alter the given value of . The solutions are and These solutions alter the quantum space limit, and change the values of to be and . Now, using the newly derived quintic formula yields . Therefore, the solutions are and
This post has been edited 1 time. Last edited by Soupboy0, Apr 11, 2025, 5:59 PM
by 1434 number theory lemma. Now, define a sigma number from the set and such that such that any number can now be expressed as ultra-complex, e.g. . Now, using the chicken jockey steve theorem, we find there are distinct solutions. These solutions actually alter the given value of . The solutions are and These solutions alter the quantum space limit, and change the values of to be and . Now, using the newly derived quintic formula yields . Therefore, the solutions are and
Since , (add to the left hand side and to the other, difference is , then Euclidian Algorithm), and (commutativity of the divides relation). Thus our answers are and all other permutations.