Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Jun 2, 2025
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Jun 2, 2025
0 replies
Minimization without derivative
Butterfly   2
N 15 minutes ago by Butterfly

Find the minimum value of $f(x)=\frac{(3x+2)^4}{x(x+3)}$ on $(0,+\infty)$ without derivative.
2 replies
1 viewing
Butterfly
32 minutes ago
Butterfly
15 minutes ago
2 Var ineq
SunnyEvan   3
N an hour ago by SunnyEvan
Let $ a,b > 0 ,$ such that :$ 3ab+1 \geq \frac{8(a^2+b^2)}{(a+b)(\frac{1}{a}+\frac{1}{b})} .$
Prove that :$$ a+b \geq a^2b^2\sqrt{2(a^2+b^2)} $$
3 replies
SunnyEvan
Tuesday at 12:44 PM
SunnyEvan
an hour ago
Weird Function
math_comb01   29
N an hour ago by Adywastaken
Source: INMO 2024/4
A finite set $\mathcal{S}$ of positive integers is called cardinal if $\mathcal{S}$ contains the integer $|\mathcal{S}|$ where $|\mathcal{S}|$ denotes the number of distinct elements in $\mathcal{S}$. Let $f$ be a function from the set of positive integers to itself such that for any cardinal set $\mathcal{S}$, the set $f(\mathcal{S})$ is also cardinal. Here $f(\mathcal{S})$ denotes the set of all integers that can be expressed as $f(a)$ where $a \in \mathcal{S}$. Find all possible values of $f(2024)$
$\quad$
Proposed by Sutanay Bhattacharya
29 replies
math_comb01
Jan 21, 2024
Adywastaken
an hour ago
Number of elements is equal to the average of all its elements
bigant146   3
N an hour ago by Assassino9931
Source: VI Caucasus Mathematical Olympiad
Let us call a set of positive integers nice, if its number of elements is equal to the average of all its elements. Call a number $n$ amazing, if one can partition the set $\{1,2,\ldots,n\}$ into nice subsets.

a) Prove that any perfect square is amazing.

b) Prove that there exist infinitely many positive integers which are not amazing.
3 replies
bigant146
Mar 14, 2021
Assassino9931
an hour ago
No more topics!
Beautiful Number Theory
tastymath75025   35
N May 26, 2025 by N3bula
Source: 2022 ISL N8
Prove that $5^n-3^n$ is not divisible by $2^n+65$ for any positive integer $n$.
35 replies
tastymath75025
Jul 9, 2023
N3bula
May 26, 2025
Beautiful Number Theory
G H J
G H BBookmark kLocked kLocked NReply
Source: 2022 ISL N8
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tastymath75025
3223 posts
#1 • 3 Y
Y by Rounak_iitr, tofubear, cubres
Prove that $5^n-3^n$ is not divisible by $2^n+65$ for any positive integer $n$.
This post has been edited 1 time. Last edited by tastymath75025, Jul 9, 2023, 4:20 PM
Reason: fix wording
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tastymath75025
3223 posts
#2 • 3 Y
Y by tofubear, cubres, Kingsbane2139
Note that if $n$ is even then $3\mid2^n+65$ but $3\not | 5^n-3^n$, impossible, so $n$ is odd, and clearly $n=1$ fails. Now we claim all $n>1$ fail. To see why, note that

\[-1 = \left( \frac{2^n+65}{5} \right) = \left( \frac{5}{2^n+65} \right) = \left( \frac{5^n}{2^n+65} \right),\]
and now if $2^n+65 \mid 5^n-3^n$ this in turn equals

\[\left( \frac{3^n}{2^n+65} \right) = \left( \frac{3}{2^n+65} \right) = \left( \frac{2^n+65}{3} \right) = +1,\]
a contradiction.

(Here we make use Jacobi symbols.)
This post has been edited 1 time. Last edited by tastymath75025, Jul 9, 2023, 4:49 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DottedCaculator
7357 posts
#3 • 3 Y
Y by centslordm, ehuseyinyigit, cubres
1998 n5

Suppose $2^n+65\mid5^n-3^n$. Since $3\nmid 5^n-3^n$ and $5\nmid 5^n-3^n$, we get $n\equiv1\pmod2$. Therefore, $5^n-3^n=5x^2-3y^2$ for some $x$ and $y$, implying $15\equiv\frac{(3y)^2}{x^2}\pmod{2^n+65}$, so $\left(\frac{15}{2^n+65}\right)=1$. Clearly, $2^1+65\nmid5^1-3^1$, so $n\geq2$. However, we also have
\begin{align*}
\left(\frac{15}{2^n+65}\right)&=\left(\frac{2^n+65}{15}\right)\\
&=\left(\frac{2^n+65}5\right)\left(\frac{2^n+65}3\right)\\
&=\left(\frac{2^n}5\right)\left(\frac{2^n+2}3\right)\\
&=(-1)(1)\\
&=-1,
\end{align*}contradiction. Therefore, $2^n+65\nmid 5^n-3^n$ for all $n$.
This post has been edited 1 time. Last edited by DottedCaculator, Jul 20, 2023, 10:18 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
brainfertilzer
1831 posts
#4 • 2 Y
Y by hdnlz, cubres
solution
This post has been edited 1 time. Last edited by brainfertilzer, Jul 9, 2023, 5:48 PM
Reason: n is positive, not nonnegative
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
VicKmath7
1391 posts
#5 • 2 Y
Y by ehuseyinyigit, cubres
Quite similar to Romania TST 2008/3/3 and exactly the same approach works here. Definitely easier than N5 and N6.

Solution of N8
This post has been edited 2 times. Last edited by VicKmath7, Jul 10, 2023, 8:14 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MatteD
90 posts
#6 • 1 Y
Y by cubres
Isn't the wording supposed to be this one?
Quote:
Prove that $5^n-3^n$ is not divisible by $2^n+65$ for any positive integer $n$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IAmTheHazard
5005 posts
#7 • 2 Y
Y by centslordm, cubres
No such $n$. By taking modulo $3$, $n$ is odd, and it is clear that $n=1$ fails, so assume $n \geq 2$. Therefore, if $(\tfrac{5}{3})^n-1 \equiv 0 \pmod{2^n+65}$, $\tfrac{5}{3}$ must be a quadratic residue modulo $2^n+65$. However, letting $(\tfrac{a}{b})$ denote the Jacobi symbol, by quadratic reciprocity we have
$$\left(\frac{5/3}{2^n+65}\right)=\left(\frac{5}{2^n+65}\right)\left(\frac{3}{2^n+65}\right)=\left(\frac{2^n+65}{5}\right)\left(\frac{2^n+65}{3}\right)=\left(\frac{\pm 2}{5}\right)\left(\frac{1}{3}\right)=(-1)(1)=-1,$$contradiction. $\blacksquare$

Remark: "IT'S [redacted] JACOBI" [dies]
This post has been edited 1 time. Last edited by IAmTheHazard, Jul 9, 2023, 12:42 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
blackmetalmusic
30 posts
#8 • 4 Y
Y by Kingsbane2139, hdnlz, ehuseyinyigit, cubres
Is this really n8?
It's just some simple quadratic residue stuff
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
megarnie
5609 posts
#9 • 3 Y
Y by GeorgeRP, ehuseyinyigit, cubres
Definition: In the solution below, $\left( \frac{a}{b} \right)$ denotes the Jacobi symbol.

No solutions.

Since $n = 1$ fails, assume that $n > 1$. Note that $2^n + 65 \equiv 1\pmod 4$.

Clearly $n$ even fails, as $3$ would divide $2^n + 65$ but $3$ cannot divide $5^n - 3^n$. Now assume $n$ is odd.

Notice that $\frac{\left( \frac{5^n}{2^n + 65} \right)}{ \left( \frac{3^n}{2^n + 65} \right) }$ is equal to $1$ (since $5^n\equiv 3^n \pmod{2^n + 65}$), since $n$ is odd, this implies $\frac{\left( \frac{5}{2^n + 65} \right)}{ \left( \frac{3}{2^n + 65} \right) } = 1$.


However, we have that \[\left( \frac{5}{2^n + 65} \right) = \left( \frac{2^n + 65}{5} \right) = -1\]and \[\left( \frac{3}{2^n + 65} \right) = \left( \frac{2^n + 65}{3} \right) = \left( \frac{1}{3}  \right) = 1,\]absurd.

Note: Another way to show that $\frac{\left( \frac{5}{2^n + 65} \right)}{ \left( \frac{3}{2^n + 65} \right) } = 1$ is to let $p$ be a prime dividing $2^n + 65$. Then $1 = \left( \frac{ \frac{5}{3} }{p}  \right) = \frac{ \left( \frac{5}{p} \right) }{ \left( \frac{3}{p} \right)} $. Since this is true for all primes $p\mid 2^n + 65$, we have the desired result.
This post has been edited 5 times. Last edited by megarnie, Jul 9, 2023, 6:48 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Leo.Euler
577 posts
#10 • 1 Y
Y by cubres
Why are N8s easier than N5s?

I claim the answer is $n=0$. Assume for contradiction that there exists a solution for $n > 0$.

Taking $\pmod{3}$ of the fractional expression, it is clear that $n$ must be odd (because otherwise $3$ divides the denominator but not the numerator). Let $(\tfrac{a}{b})$ denote the Jacobi symbol henceforth.

Note that $(5/3)^n \equiv 1 \pmod{2^n+65}$, and as $n$ is odd, it is clear that $5/3$ must be a quadratic residue (mod $2^n+65$). But:

\begin{align*}
\left(\frac{5/3}{2^n+65}\right) &= \left(\frac{5}{2^n+65}\right) \left(\frac{3^{-1}}{2^n+65}\right) \\
&= \left(\frac{5}{2^n+65}\right) \left(\frac{3}{2^n+65}\right)
&= \left(\frac{2^n+65}{3}\right) \left(\frac{2^n+65}{5}\right)
&= 1 \cdot \left(\frac{2}{5}\right)^n
&= 1 \cdot (-1)
&= -1,
\end{align*}a contradiction, and we conclude. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cj13609517288
1930 posts
#11 • 1 Y
Y by cubres
lol what

Assume FTSOC that there does exist some $n$ such that $2^n+65\mid 5^n-3^n$. If $n$ is even, then $2^n+65$ is a multiple of $3$, impossible. So $n$ is odd.

Let $p$ be a prime dividing $2^n+65$. Obviously $p\not\in\{2,3,5\}$. Then
\[p\mid 2^n+65\mid 5^n-3^n\mid 15^n-9^n,\]so $15$ is a QR mod $p$.

By Quadratic Reciprocity,
\[\left(\frac{p}{3}\right)\left(\frac{p}{5}\right)=\left(\frac{15}{p}\right)\left(\frac{p}{15}\right)=(-1)^{(p-1)/2}.\]Caseworking, we get that $p$ mod $60$ is one of $S=\{1,7,11,17,43,49,53,59\}$. Under further inspection, we note that $S$ is closed under multiplication mod $60$, so $2^n+65$ mod $60$ is also in $S$. So $2^n$ mod $60$ is in
\[\{2,6,12,38,44,48,54,56\}.\]Since it must be a multiple of $4$ and not a multiple of $3$, it must be one of $\{44,56\}$. But that means $2^n$ is $1$ or $4$ mod $5$, impossible since $n$ is odd. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BlazingMuddy
283 posts
#12 • 3 Y
Y by sabkx, pavel kozlov, cubres
May I give a small comment to the placement of this problem?

It seems that this problem is a kind of a problem that gets killed with one trick... Which reminds me of ISL 2017 N8. The difficulty in finding the trick is supposed to be what makes the problem an N8. The difference between this thing and ISL 2017 N8, in my opinion, is that the kind of trick that kills ISL 2017 N8 is something that might be too hard to find in a contest setting. Meanwhile this? I'm not so sure about that...

Anyways, let's replace $5$ and $65$ with arbitrary odd positive integers, say $A$ and $B$, and see how well this problem generalizes. For $n$ even, you want $3 \mid 2^n + B$, so $B \equiv 2 \pmod{3}$; also you want $3 \nmid A$. For $n = 1$, you just want $B + 2 \nmid A - 3$. For $n$ odd with $n > 1$, applying Jacobi symbol, you want that
$$ \left(\frac{A}{2^n + B}\right) = -\left(\frac{3}{2^n + B}\right) = (-1)^{(B + 1)/2} \left(\frac{2^n + B}{3}\right) = (-1)^{(B + 1)/2}. $$For a huge convenience, you also want $A \mid B$, so
$$ \left(\frac{A}{2^n + B}\right) = (-1)^{(A - 1)(B - 1)/4} \left(\frac{2}{A}\right). $$We can now pick $B \equiv 1 \pmod{4}$ and $A \equiv 3, 5 \pmod{8}$ (as in the original problem). In summary...
Quote:
If $A \equiv 3, 5 \pmod{8}$, $3 \nmid A$, $B \equiv 5 \pmod{12}$, $A \mid B$, and $B + 2 \nmid A - 3$, then $2^n + B$ does not divide $A^n - 3^n$ for any $n \geq 1$.
Quote:
If $A \equiv 3, 5 \pmod{8}$, $3 \nmid A$, $B \equiv 5 \pmod{12}$, and $A \mid B$, then $2^n + B$ does not divide $A^n - 3^n$ for any $n > 1$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Orthogonal.
594 posts
#13 • 1 Y
Y by cubres
Huh.

Assume that there exists an $n$ such that $\frac{5^n-3^n}{2^n+65}$ is an integer. By taking mod $3$, $n$ must be odd. Clearly, $n=1$ fails. Let $\left (\frac{a}{b}\right)$ denote the Jacobi symbol. We then have that $$\frac{\left(\frac{5^n}{2^n+65}\right)}{\left(\frac{3^n}{2^n+65}\right)}=\frac{\left(\frac{5}{2^n+65}\right)}{\left(\frac{3}{2^n+65}\right)}=1.$$
But $$\left(\frac{3}{2^n+65}\right)=\left(\frac{2^n+65}{3}\right) = 1$$and $$\left(\frac{5}{2^n+65}\right) = \left(\frac{2^n+65}{5}\right) = -1,$$
a contradiction.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Sourorange
107 posts
#14 • 1 Y
Y by cubres
Is this really difficult enough to be N8?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vsamc
3789 posts
#15 • 2 Y
Y by kamatadu, cubres
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1746 posts
#16 • 1 Y
Y by cubres
We use the Jacobi symbol. Taking $\pmod 3$ forces $n$ odd. We have for $n\ge 3$
\[\left(\frac{5\cdot 3^{-1}}{2^n+65}\right)=\left(\frac{5}{2^n+65}\right)\left(\frac{3}{2^n+65}\right)=\left(\frac{2^n+65}{5}\right)\left(\frac{2^n+65}{3}\right)=(-1)(1)=-1\]a contradiction because we need $5\cdot 3^{-1}\equiv 1\pmod {2^n+65}$.
This post has been edited 1 time. Last edited by awesomeming327., Aug 4, 2023, 5:35 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Sourorange
107 posts
#17 • 1 Y
Y by cubres
Here is the official answer proposed by IMO committee.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheBigMath13876
2 posts
#18 • 1 Y
Y by cubres
I've just started pursuing math at this level, so I'm not at all good at all of this. With that being said, does anyone know if there is another way to solve this without the use of modules?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Hertz
32 posts
#20 • 1 Y
Y by cubres
Let's assume $n$ is even, then $3 \mid 2^n + 65$ but $3 \nmid 5^n - 3^n$ contradiction. Since $n \neq 1$ we get $n \ge 3$ odd number.

Now let's assume that $2^n + 65 \mid 5^n-3^n$ then we get $5^n \equiv 3^n ($mod $ 2^n+65)$ Now let us introduce the jaccobi symbol. We get

$$\left( \frac{5^n}{2^n+65} \right) = \left (\frac{3^n}{2^n+65} \right)$$
Now lets count them seperatly:
$$\left( \frac{3^n}{2^n+65} \right) = \prod_{i=1}^n \left( \frac{3}{2^n+65} \right)^n = \left( \frac{3}{2^n+65} \right) $$
But since $2^n + 65 \equiv 1 ($mod $ 4) $ we get $\left( \frac{3}{2^n+65} \right) = \left( \frac{2^n+65}{3} \right) = 1 $

$$\left( \frac{5^n}{2^n+65} \right) = \prod_{i=1}^n \left( \frac{5}{2^n+65} \right)^n = \left( \frac{5}{2^n+65} \right) $$
Since $5 \equiv 1 ($mod $  4)$ we get $\left( \frac{5}{2^n+65} \right) = \left( \frac{2^n+65}{5} \right)$

But $2^n \equiv 2;3 ($mod $ 5)$ and $5 \mid 65$ so $\left( \frac{2^n+65}{5} \right) = -1$ a contradiction
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hectorleo123
347 posts
#21 • 1 Y
Y by cubres
tastymath75025 wrote:
Prove that $5^n-3^n$ is not divisible by $2^n+65$ for any positive integer $n$.
$\color{blue}\boxed{\textbf{Proof:}}$
$\color{blue}\rule{24cm}{0.3pt}$
Here $\left(\frac{a}{b}\right)$ is the Jacobi symbol
Suppose there exists $n$ such that
$$2^n+65|5^n-3^n$$If $n=1\Rightarrow 67|2(\Rightarrow \Leftarrow)$
$$\Rightarrow n>1$$$\color{red}\boxed{\textbf{If n is even:}}$
$\color{red}\rule{24cm}{0.3pt}$
$$\Rightarrow 2^n\equiv 1\pmod{3}$$$$\Rightarrow 2^n+65\equiv 0\pmod{3}$$$$\Rightarrow 3|5^n-3^n$$$$\Rightarrow 3|5^n(\Rightarrow \Leftarrow)$$$\color{red}\rule{24cm}{0.3pt}$
$\color{red}\boxed{\textbf{If n is odd:}}$
$\color{red}\rule{24cm}{0.3pt}$
$$2^n+65|5^n-3^n$$$$\Rightarrow \left( \frac{5^n}{2^n+65} \right)=\left( \frac{3^n}{2^n+65} \right)$$$$\Rightarrow \left( \frac{5}{2^n+65} \right)^n=\left( \frac{3}{2^n+65} \right)^n$$$$\Rightarrow \left( \frac{5}{2^n+65} \right)=\left( \frac{3}{2^n+65} \right)$$$$\Rightarrow \left( \frac{2^n+65}{5} \right)(-1)^{\frac{(2^n+64)(4)}{4}}=\left( \frac{2^n+65}{3} \right)(-1)^{\frac{(2^n+64)(2)}{4}}$$Since $n>1\Rightarrow \frac{(2^n+64)(2)}{4}$ is even:
$$\Rightarrow \left( \frac{2^n}{5} \right)=\left( \frac{2^n-1}{3} \right)$$$$\Rightarrow \left( \frac{2(2^{n-1})}{5} \right)=\left( \frac{1}{3} \right)=1$$Since $n$ is odd $\Rightarrow 2^{n-1}$ is a perfect square
$$\Rightarrow \left( \frac{2}{5} \right)=1$$$$\Rightarrow -1=1(\Rightarrow \Leftarrow)$$$\color{red}\rule{24cm}{0.3pt}$
$$\Rightarrow 2^n+65\nmid 5^n-3^n$$$\color{blue}\rule{24cm}{0.3pt}$
This post has been edited 2 times. Last edited by hectorleo123, Mar 13, 2024, 3:27 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
M.rastgar
18 posts
#22 • 1 Y
Y by cubres
pretty same as #2. n is odd . Let k= 2^n +65 then we have 5^n = 3^n mod k then (15/k)=1 this means (3/k)= (5/k) but we have (3/k) = 1 and (5/k) = -1 which is contradiction.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_comb01
662 posts
#23 • 1 Y
Y by cubres
Jacobi kills it, probably same as others.
ISL 2022 N8 wrote:
Prove that $2^n+65$ does not divide $5^n-3^n$ for any positive integer $n$
Clearly $n$ has to be odd, because if it is even then $3 \mid 2^n+65 \mid 5^n-3^n$ which is a contradiction, $5^n \equiv 3^n (\mod 2^n+65)$
then:
$\left(\frac{5^n}{2^n+65}\right)=\left(\frac{5}{2^n+65}\right)=\left(\frac{2^n+65}{5}\right)=-1$
$\left(\frac{3^n}{2^n+65}\right)=\left(\frac{3}{2^n+65}\right)=\left(\frac{2^n+65}{3}\right)=1$
where the last 2 lines are in jacobi symbol. Contradiction...
This post has been edited 5 times. Last edited by math_comb01, Mar 21, 2024, 3:15 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
thdnder
198 posts
#24 • 1 Y
Y by cubres
Assume $2^n + 65 \mid 5^n - 3^n$. If $n \equiv 0 (2)$, then $3 \mid 2^n + 65 \mid 5^n - 3^n$, a contradiction. Thus $n \equiv 1 (2)$. Now note that $\left(\frac{5^n}{2^n + 65} \right) = \left(\frac{3^n}{2^n + 65}\right)$. By using quadratic reciprocity law, we get $\left(\frac{3^n}{2^n + 65}\right) = \left(\frac{2^n + 65}{3^n}\right) = \left(\frac{2^n + 65}{3}\right)^n = \left(\frac{2^n + 65}{3}\right) = \left(\frac{1}{3}\right) = 1$.

But $\left(\frac{5^n}{2^n + 65}\right) = \left(\frac{2^n + 65}{5^n}\right) = \left(\frac{2^n + 65}{5}\right) = \left(\frac{2^n}{5}\right) = \left(\frac{2}{5}\right) = -1$, which is an evident contradiction. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ihategeo_1969
245 posts
#25 • 1 Y
Y by cubres
Assume some $n$ works.

Obviously $n=1$ does not work for size reasons. And also even $n$ does not work because we get $3 \mid 2^n+65 \mid 5^n-3^n \implies 3 \mid 5$, which I think is wrong as far as I know.

See that we get \[\left(\frac{5^n}{2^n+65}\right)=\left(\frac{3^n}{2^n+65}\right) \iff \left(\frac{5}{2^n+65}\right)=\left(\frac{3}{2^n+65}\right) \iff \left(\frac{2^n+65}5\right)=\left(\frac{2^n+65}3 \right) \iff \left(\frac{2^n}5 \right)=\left(\frac{2^n-1}3\right)\]which is obviously false for odd $n$ because it implies $\left(\frac{2^n}5\right)=-1$ but $\left(\frac{2^n-1}3\right)=1$, a contradiction.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
OronSH
1748 posts
#26 • 2 Y
Y by Clew28, cubres
First $n\ne 1$ clearly and $n\not\equiv 0\pmod 2$ by $\pmod 3.$ Now if $p\mid 5^n-3^n$ then $(5/3)^n\equiv 1\pmod n$ with $n$ odd, so $\left(\frac{5/3}p\right)=\left(\frac{15}p\right)=1.$ Now we must have $\left(\frac{15}{2^n+65}\right)=1,$ which is equivalent by QR to $\left(\frac{2^n+5}{15}\right)=1.$ But $2^n\equiv 2,8\pmod{15}$ for odd $n,$ and we can check $\left(\frac7{15}\right)=\left(\frac{13}{15}\right)=-1,$ contradiction.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AshAuktober
1015 posts
#27 • 1 Y
Y by cubres
What's the motivation behind using the Jacobi symbol here?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Vulch
2709 posts
#28 • 1 Y
Y by cubres
Can anyone solve it without Jacobi symbol?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mr.Aura
1 post
#29 • 2 Y
Y by Nobitasolvesproblems1979, cubres
Clearly when $n$ is even we get a contradiction, so $n$ is odd and $n$ $\geq$ 3.

Now, using Jacobi's symbol we get

$\left(\frac{5^n}{2^n+65}\right)=\left(\frac{5}{2^n+65}\right)=\left(\frac{2^n+65}{5}\right)=-1$, and

$\left(\frac{3^n}{2^n+65}\right)=\left(\frac{3}{2^n+65}\right)=\left(\frac{2^n+65}{3}\right)=1$.

But this two must be equal, then we have a contradiction.
This post has been edited 2 times. Last edited by Mr.Aura, Dec 13, 2024, 12:43 PM
Reason: I forgot to write
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Eka01
204 posts
#30 • 2 Y
Y by cubres, L13832
Solved on the recommendation of the orz Sammy27.
If $n$ is even then $A=2^n +65$ is divisible by $3$ which doesn't divide $5^n-3^n$.
Henceforth assume $n$ is odd. This implies $5^n \equiv 3^n(mod \ A) \implies \left( \frac{5^n}{A} \right) =\left( \frac{3^n}{A} \right)$.
Now since the jacobi function is multiplicative, we have $\left( \frac{5^n}{A} \right) = \left( \frac{5}{A} \right)= \left( \frac{A}{5} \right)=-1$
And $\left( \frac{3^n}{A} \right) = \left( \frac{3}{A} \right)= \left( \frac{A}{3} \right)=1$
Which is a contradiction, hence there's no solutions for any $n$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
orangesyrup
130 posts
#31 • 1 Y
Y by cubres
any sols without using jacobi?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
zuat.e
77 posts
#32 • 1 Y
Y by cubres
Claim: $n$ is odd
Note that $3\nmid 5^n-3^n$, hence $3 \nmid 2^n + 65$. As:
\[\left\{\begin{array}{cl}
             2^n \equiv 1&n \mbox{ odd}  \\
             2^n \equiv 2&n \mbox{ even} 
        \end{array}\right.\]$2^n+65\equiv 2^n+2 \equiv \{0,1\} \pmod{3}$ and for $2^n+65\equiv 1\pmod{3}$, we must have $n$ odd.
Therefore, looking at $\pmod{5}$, we have:
\[\left\{\begin{array}{cc}
         2^n\equiv2&n\equiv1\pmod{4}  \\
         2^n\equiv4&n\equiv2\pmod{4}  \\
         2^n\equiv3&n\equiv3\pmod{4}  \\
         2^n\equiv1&n\equiv4\pmod{4}  \\
    \end{array}\right.\]and as $n$ is odd, $2^n \equiv 2,3 \pmod{5}$
We now rewrite $(\frac{5}{3})^n\equiv1 \pmod{2^n+65}$, consequently $(\frac{5}{3})^{n+1}\equiv \frac{5}{3} \pmod{2^n+65}$, implying $\frac{5}{3}$ is $QR$ $\pmod{2^n + 65}$.
Nonetheless:\[\left( \frac{(\frac{5}{3})}{2^n +65}\right) \equiv \left( \frac{5}{3}\right)\left( \frac{5}{2^n+65}\right)\equiv \left( \frac{2^n+65}{5}\right)\equiv\left( \frac{\{2,3\}}{5}\right)\]but: \[\left( \frac{2}{5}\right), \left( \frac{3}{5}\right)\equiv -1\]therefore as: \[\left( \frac{(\frac{5}{3})}{2^n +65})\right)=\prod_{p\mid 2^n +65}\left(\frac{(\frac{5}{3})}{p}\right)\]there exists $p\mid 2^n +65$ prime such that $(\frac{5}{3})$ isn't $QR$ $\pmod{p}$, contradicting the fact that $(\frac{5}{3})$ is $QR$ $\pmod{2^n +65}$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cubres
123 posts
#33
Y by
Storage - grinding ISL problems
This post has been edited 2 times. Last edited by cubres, Jan 29, 2025, 9:03 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilikeminecraft
684 posts
#34
Y by
triv n8???
the answer is no solutions
If $n$ is even, then $3\mid65 + 2^n\mid 5^n-3^n,$ contradiction
Thus, $n$ is odd. Specifically, we can get that $5^{2k + 1} \equiv 3^{2k +1}\pmod{2^n + 65}.$ This implies $15$ is a quadratic residue modulo $2^n + 65.$ However,
\begin{align*}
\left(\frac{15}{2^n+65}\right) & = \left(\frac{5}{2^n+65}\right)\left(\frac{3}{2^n+65}\right) \\
& = \left(\frac{5}{2^n}\right) = -1
\end{align*}which is a contradiction.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomehuman
499 posts
#35
Y by
Assume toward a contradiction $n$ works.

Claim: $n$ is odd.
Proof: Assume toward a contradiction $n$ is even. Then, $3\mid 2^n+65$, but $3\nmid 5^n-3^n$. $\blacksquare$

Let $p$ be a prime factor of $2^n+65$. Then,
\[\left(\frac{5}{p}\right) = \left(\frac{5^n}{p}\right) = \left(\frac{3^n}{p}\right) = \left(\frac{3}{p}\right).\]
Let $a$ and $b$ be positive integers such that $ab = 2^n+65$ and every prime factor of $a$ is $1\pmod{4}$ and every prime factor of $b$ is $3\pmod{4}$.

Let $p\mid a$. Then, by quadratic reciprocity, $\left(\frac{p}{5}\right) = \left(\frac{5}{p}\right) = \left(\frac{3}{p}\right) = \left(\frac{p}{3}\right)$.

Let $p\mid b$. Then, by quadratic reciprocity, $\left(\frac{q}{5}\right) = \left(\frac{5}{q}\right) = \left(\frac{3}{q}\right) = -\left(\frac{q}{3}\right)$.

Let $b=p_1\dots p_k$ with $p_1,\dots, p_k$ prime.
Because $1\equiv 2^n+65\equiv ab\equiv b \equiv p_1\dots p_k \equiv 3^k\pmod{4}$, $k$ is even.
So, we have
\[\left(\frac{b}{5}\right) = \prod_{i=1}^k \left(\frac{p_i}{5}\right) = \prod_{i=1}^k -\left(\frac{p_i}{3}\right) =  \prod_{i=1}^k \left(\frac{p_i}{3}\right) = \left(\frac{b}{3}\right).\]By similar logic, $\left(\frac{a}{5}\right) = \left(\frac{a}{3}\right)$. Multiplying, we get $\left(\frac{2^n+65}{5}\right) = \left(\frac{2^n+65}{3}\right)$.

However, since $n$ is odd, the LHS is $-1$ and the RHS is $1$, a contradiction.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Adywastaken
76 posts
#36
Y by
$2^n+65\equiv 0 \pmod 3 \implies n=2k+1$.
Let $3^k=v$, $5^k=u$.
$\left(\frac{5v}{u}\right)^2 \equiv 15 \pmod {2^n+65}$.
For odd n,

\[
\left(\frac{15}{2^n+65}\right)=\left(\frac{3}{2^n+65}\right) \left(\frac{5}{2^n+65}\right)=\left(\frac{2^n+65}{3}\right) \left(\frac{2^n+65}{5}\right)=\left(\frac{2^n+2}{3}\right) \left(\frac{2^n}{5}\right)=(-1)(1)=-1
\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
N3bula
302 posts
#37
Y by
$\color{blue} \boxed{\textbf{Claim: }n\textbf{ must be odd}}$

Proof:
Suppose $n$ is even, and take both expressions modulo $3$.
\[(1) \quad 2^n+65\equiv 1 +65\equiv 66\equiv 0 \pmod 3\]\[(2) \quad 5^n-3^n\equiv 5^n\not\equiv 0\pmod 3\]Thus combining $(1)$ and $(2)$ yields a contradiction.

$\color{blue} \boxed{\textbf{Claim: }n\textbf{ cannot be odd}}$

Proof:
If we have a prime $p$ such that $p\mid 2^n+65$ such that:
\[\left(\frac{5}{p}\right)\neq \left(\frac{3}{p}\right)\]We get a contradiction as if $p\mid 2^n+65$ and $2^n+65\mid 5^n-3^n$ we have that:
\[5^n\equiv 3^n\pmod p\]so we get:
\[\left(\frac{5^n}{p}\right)= \left(\frac{3^n}{p}\right)\]as $n$ is odd this means:
\[\left(\frac{5}{p}\right)= \left(\frac{3}{p}\right)\]Which is a contradiction. Now I will show such a $p$ exists. Using the jacobi symbol we get:
\[(1)\quad \left(\frac{5}{2^n+65}\right) = \left(\frac{2^n+65}{5}\right)=1\]\[(2)\quad \left(\frac{3}{2^n+65}\right)=\left(\frac{2^n+65}{3}\right)=-1\]These follow because $n$ is odd and $2^n+65\equiv 1\pmod 4$. Now let $2^n+65=p_1^{\alpha_1}\dots p_k^{\alpha_k}$.
The definition of the jacobi symbol gives us that:
\[\left(\frac{k}{2^n+65}\right)=\prod_{i=1}^{k}\left(\frac{k}{p_i}\right)^{\alpha_i}\]If for all such $p_i$ we have that
\[\left(\frac{5}{p_i}\right)= \left(\frac{3}{p_i}\right)\]we get that:
\[\left(\frac{5}{2^n+65}\right)= \left(\frac{3}{2^n+65}\right)\]from the definition of the jacobi symbol. Thus this is a contradiction.
Z K Y
N Quick Reply
G
H
=
a