Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Jun 2, 2025
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Jun 2, 2025
0 replies
Euclidean theorem
Bet667   2
N 20 minutes ago by Primeniyazidayi
if $x>2$ then prove that $$\pi(x)\ge ln ln x$$
2 replies
+1 w
Bet667
6 hours ago
Primeniyazidayi
20 minutes ago
Non-classical FE
M11100111001Y1R   1
N 38 minutes ago by CatinoBarbaraCombinatoric
Source: Iran TST 2025 Test 2 Problem 3
Find all functions $f:  \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $x, y >0$ we have:
$$f(f(f(xy))+x^2)=f(y)(f(x)-f(x+y))$$
1 reply
M11100111001Y1R
2 hours ago
CatinoBarbaraCombinatoric
38 minutes ago
My Unsolved Problem
ZeltaQN2008   5
N an hour ago by Funcshun840
Source: IDK
Let \( ABC \) be an acute triangle inscribed in its circumcircle \( (O) \), and let \( (I) \) be its incircle. Let \( K \) be the point where the $A-mixtilinear$ incircle of triangle $ABC$ touches \((O)\). Suppose line \( OI \) intersects segment \( AK \) at \( P \), and intersects line \( BC \) at \( Q \). Let the line through \( I \) perpendicular to \( BC \) intersect line \( KQ \) at \( A' \). Prove that: \[AI \parallel PA'.\]
5 replies
ZeltaQN2008
Yesterday at 1:23 PM
Funcshun840
an hour ago
Angle QRP = 90°
orl   13
N an hour ago by Ilikeminecraft
Source: IMO ShortList, Netherlands 1, IMO 1975, Day 1, Problem 3
In the plane of a triangle $ABC,$ in its exterior$,$ we draw the triangles $ABR, BCP, CAQ$ so that $\angle PBC = \angle CAQ = 45^{\circ}$, $\angle BCP = \angle QCA = 30^{\circ}$, $\angle ABR = \angle RAB = 15^{\circ}$.

Prove that

a.) $\angle QRP = 90\,^{\circ},$ and

b.) $QR = RP.$
13 replies
orl
Nov 12, 2005
Ilikeminecraft
an hour ago
No more topics!
The best computer problems of the year
NT_G   9
N Apr 10, 2025 by bin_sherlo
Source: https://t.me/NeuroGeometry
1. I is incenter of triangle $ABC$. $K$ is the midpoint of arc $BC$ not containing $A$. $L$ is the midpoint of arc $(BAC)$ $M$ is the midpoint of $IK$ and $N$ is the midpoint of $LM$.  $D$ is projection of $I$ onto $BC$. $S$ is the second intersection of $KD$ and $(ABC)$
Prove that $(ISD)$ is tangent to $(AMN)$.

2. Circle $w$ with center $I$ is incircle of triangle $ABC$. $D$ is projection of $I$ onto $BC$ Points $E, F$ on segments $BI$, $CI$ are following condition: $IE = IF$. $M$ is the midpoint of $EF$. $P$ is the second intersection of $(IMD)$ and $w$. $Q$ is the second intersection of $AP$ and $(IMD)$.
Prove, that $I,E,F,Q$ are concyclic.

I am grateful to Savva Chuev for making the diagrams.
9 replies
NT_G
Dec 31, 2023
bin_sherlo
Apr 10, 2025
The best computer problems of the year
G H J
Source: https://t.me/NeuroGeometry
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NT_G
45 posts
#1 • 2 Y
Y by GeoKing, SBYT
1. I is incenter of triangle $ABC$. $K$ is the midpoint of arc $BC$ not containing $A$. $L$ is the midpoint of arc $(BAC)$ $M$ is the midpoint of $IK$ and $N$ is the midpoint of $LM$.  $D$ is projection of $I$ onto $BC$. $S$ is the second intersection of $KD$ and $(ABC)$
Prove that $(ISD)$ is tangent to $(AMN)$.

2. Circle $w$ with center $I$ is incircle of triangle $ABC$. $D$ is projection of $I$ onto $BC$ Points $E, F$ on segments $BI$, $CI$ are following condition: $IE = IF$. $M$ is the midpoint of $EF$. $P$ is the second intersection of $(IMD)$ and $w$. $Q$ is the second intersection of $AP$ and $(IMD)$.
Prove, that $I,E,F,Q$ are concyclic.

I am grateful to Savva Chuev for making the diagrams.
Attachments:
This post has been edited 2 times. Last edited by NT_G, Dec 31, 2023, 1:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NT_G
45 posts
#2 • 1 Y
Y by GeoKing
P1 has a generalisation:
Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SBYT
196 posts
#3 • 3 Y
Y by GeoKing, vuanhnshn, Om245
Proof of part 1

It is well know that $\angle ASI=\frac{\pi}{2}$ (Sharky Devil).Let $AS$ meets $BC$ at $E$,so $EI$ is the diameter of $\odot ISD$.
By $KI^2=KB^2=KD\cdot KS$, we can know that $KI$ is a tangent line of $\odot IDS$,so $AK\perp IE$.
Let $\odot ISD$ meets $\odot ABC$ at $S,F$,$\angle SFI=\angle SEI=\frac{\pi}{2}-\angle SAI=\frac{\pi}{2}-\angle SLK=\angle SKL=\angle SFL$,so $F,I,L$ are conlinear.
By $MF=MI=MK$, we can get $MF$ is another tangent line of $\odot IDS$.
It means that $FI$ is the polar of $M$ to $\odot ISD$ ,and $L$ lies on this line.
By $N$ is the midpoint of $ML$, we know $N$ lies on the radical axis of $\odot ISD$ and $\odot M$.
Let $NI$ meets $\odot ISD$ at $G$ again,then $NI\cdot NG=NM^2=NL^2=NA^2$.
So $A,N,M,G$ are concyclic.
Let $GP$ is a tangent line of $\odot ISD$,then $\angle IGP=\angle GIK=\angle AIN=\angle NAG$,so $IG$ tangents $\odot AMN$,too.$\Box$.
Attachments:
This post has been edited 1 time. Last edited by SBYT, Jan 2, 2024, 10:55 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Om245
166 posts
#4 • 2 Y
Y by ATGY, GeoKing
Solution of frist part

It well known that $S$ is Sharky-Devil point (as if $S$ is Sharky-Devil point then $SD$ is angle bisector so $S - D - K$)
$$\angle SIA = \angle AES = \angle AEF - \angle SEF$$
Spiral similarity at $S$ sends $\overline{EF}$ to $\overline{BC} \implies \angle SEF = \angle SCB$
so $\angle SIA = 90 - \frac{\angle A}{2} - \angle SCB$. From $S - D - K \implies \angle KSC = \angle KAC$

So $\angle SIA = 90 - \angle SDA$ from $\overline{ID} \perp \overline{BC}$ we get $\angle SIA = \angle SDI$ hence we get $\overline{AK}$ tangent to $(SID)$.

Observe $\angle LAM = 90$ and $N$ is midpoint of $LM$ we get $AN = NM$.

Let $Y =\overline{LI} \cap (ABC)$ from $\angle LYK = 90$. $Y$ also lie on circle $w$ with center $M$ with radius $MI$.
$\overline{MI}$ is tangent to $(SID)$ and $MI = MY$ so $MY$ also tangent to $(SID)$.

Let $ X = \overline{LI} \cap (SID)$ and $ P = \overline{MX} \cap (SID)$
$$(Y,I;X,P)\stackrel{I}{=}(L,M;N,\infty{\overline{LM}}) = -1 \implies \overline{IP} \parallel  \overline{LM}$$
$$\angle IXM = \angle PIM = \angle IMN \implies \angle IXM = \angle XMN$$
Now as $AN=NM$ we get $\angle IXM = \angle XMN = \angle MAN$ so $X,A,N,M$ cyclic points.

Now as tangent to $I$ and $N$ are parallel, Homothety at $X$ sends $(SID)$ to $(ANM)$ hence $X$ is tangent point of $(SID)$ and $(ANM)$


[asy]

  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(11.574732859594226cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -4.873873445075136, xmax = 31.10085941451909, ymin = -11.661028613565328, ymax = 5.713881651780748;  /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); pen qqwuqq = rgb(0.,0.39215686274509803,0.); pen ffxfqq = rgb(1.,0.4980392156862745,0.); pen xfqqff = rgb(0.4980392156862745,0.,1.); pen yqqqqq = rgb(0.5019607843137255,0.,0.); 

draw((6.368657141965151,2.5433357126321146)--(4.512464621764582,-5.062647026226595)--(18.972464621764566,-4.982647026226595)--cycle, linewidth(0.8) + zzttqq); 
 /* draw figures */
draw((6.368657141965151,2.5433357126321146)--(4.512464621764582,-5.062647026226595), linewidth(0.8) + zzttqq); 
draw((4.512464621764582,-5.062647026226595)--(18.972464621764566,-4.982647026226595), linewidth(0.8) + zzttqq); 
draw((18.972464621764566,-4.982647026226595)--(6.368657141965151,2.5433357126321146), linewidth(0.8) + zzttqq); 
draw(circle((8.300784634276322,-2.0706842173650433), 2.9709584472097386), linewidth(0.8)); 
draw(circle((11.730137875215629,-2.7945875875046027), 7.565639484614538), linewidth(0.8) + uququq); 
draw(circle((5.92712732146404,-2.788856351184553), 5.350441176933094), linewidth(0.8) + qqwuqq); 
draw((4.834979824965175,0.31920371462611136)--(11.771994161248703,-10.360111287981526), linewidth(0.8)); 
draw(circle((4.705833327883924,-3.5760752555448443), 3.8974192837266632), linewidth(0.8) + qqwuqq); 
draw((11.688281589182546,4.770936112972321)--(10.036389397762512,-6.215397752673285), linewidth(0.8)); 
draw((6.368657141965151,2.5433357126321146)--(11.771994161248703,-10.360111287981526), linewidth(0.8) + blue); 
draw(circle((7.334720888120734,0.23632574763353487), 2.5011145795902485), linewidth(0.8) + ffxfqq); 
draw((1.4299743859548495,-5.687620960887004)--(10.862335493472528,-0.7222308198504819), linewidth(0.8) + blue); 
draw(circle((10.036389397762512,-6.215397752673285), 4.493436789897383), linewidth(0.8) + xfqqff); 
draw((11.688281589182546,4.770936112972321)--(5.687961913815029,-7.347719527458808), linewidth(0.8) + yqqqqq); 
draw((5.687961913815029,-7.347719527458808)--(11.771994161248703,-10.360111287981526), linewidth(0.8)); 
draw((1.4299743859548495,-5.687620960887004)--(10.036389397762512,-6.215397752673285), linewidth(0.8)); 
draw((8.300784634276322,-2.0706842173650433)--(7.699141118482296,-6.072069154557328), linewidth(0.8)); 
 /* dots and labels */
dot((6.368657141965151,2.5433357126321146),linewidth(4.pt) + dotstyle); 
label("$A$", (6.282251150461679,2.774092062416336), NE * labelscalefactor); 
dot((4.512464621764582,-5.062647026226595),dotstyle); 
label("$B$", (4.1150985685584125,-5.121881257735515), NE * labelscalefactor); 
dot((18.972464621764566,-4.982647026226595),dotstyle); 
label("$C$", (19.040184176100908,-4.801519571715034), NE * labelscalefactor); 
dot((8.317221220610055,-5.04159719718734),linewidth(4.pt) + dotstyle); 
label("$D$", (8.110197241284434,-4.726140351474921), NE * labelscalefactor); 
dot((8.300784634276322,-2.0706842173650433),linewidth(4.pt) + dotstyle); 
label("$I$", (8.374024512124832,-1.9182643975307068), NE * labelscalefactor); 
dot((11.771994161248703,-10.360111287981526),linewidth(4.pt) + dotstyle); 
label("$K$", (11.841468643170058,-10.209978623943151), NE * labelscalefactor); 
dot((11.688281589182546,4.770936112972321),linewidth(4.pt) + dotstyle); 
label("$L$", (12.011071888710314,4.300521272278627), NE * labelscalefactor); 
dot((10.036389397762512,-6.215397752673285),linewidth(4.pt) + dotstyle); 
label("$M$", (9.58009203596665,-6.290259171457269), NE * labelscalefactor); 
dot((10.862335493472528,-0.7222308198504819),linewidth(4.pt) + dotstyle); 
label("$N$", (10.428108263667928,-0.9948689495893208), NE * labelscalefactor); 
dot((4.834979824965175,0.31920371462611136),linewidth(4.pt) + dotstyle); 
label("$S$", (5.170407651920003,0.34311220967268735), NE * labelscalefactor); 
dot((9.8239245758683,0.48012718557600564),linewidth(4.pt) + dotstyle); 
label("$E$", (9.900453721987132,0.7388531159332813), NE * labelscalefactor); 
dot((5.414531992539741,-1.3663123105462742),linewidth(4.pt) + dotstyle); 
label("$F$", (5.584993363240629,-1.409454660909943), NE * labelscalefactor); 
dot((1.4299743859548495,-5.687620960887004),linewidth(4.pt) + dotstyle); 
label("$X$", (1.2883778095541518,-5.49877735893608), NE * labelscalefactor); 
dot((5.687961913815029,-7.347719527458808),linewidth(4.pt) + dotstyle); 
label("$Y$", (5.754596608780884,-7.194809814338626), NE * labelscalefactor); 
dot((7.699141118482296,-6.072069154557328),linewidth(4.pt) + dotstyle); 
label("$P$", (7.770990750203923,-5.913363070256703), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
This post has been edited 3 times. Last edited by Om245, Jan 3, 2024, 4:03 AM
Reason: image
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NT_G
45 posts
#5 • 3 Y
Y by Grifon, SBYT, mathlove_13520
My first solution of P1 was similar to SBYT's. I found it accidently while Cartesian bashing the problem for the New Year stream on NeuroGeometry. Trick with proving tangency using radical axis was new for me...

My second solution:
Due to the fact that $ID \parallel KL$, $\angle IDS = \angle LKS$, therefore $LI$ passes through the second intersection of $(SID)$ and $(ABC)$. It means that $(SID)$ contains the point of tangency of circumcircle and mixtilinear circle of $\triangle ABC$.
Now we invert the problem with center in $A$. Problem turns into:
In triangle $ABC$ $I_a$ is the $A$ - excenter. $N$ is the projection of $I_a$ onto $BC$. $L, L_a$ are foots of bisectors of $\angle BAC$. K is a point on $AI_a$ such that $(I,I_a; K, A) = -1$. $A'$ is a point on $\Gamma = (AL_{a}K)$ suiting: $KA = KA'$. $\gamma$ is a circle passing through $N, I_a$ that is tangent to $AI_a$. We have to prove that $KA'$ is tangent to $\gamma$.
Let's spot that due to the fact that $\angle L_{a}AK = \frac{\pi}{2}$, $A'$ is the reflection of $A$ in $KL_a$.Therefore, we have to prove that line $O_{\Gamma}K$ passes through $O_{\gamma}$. $L_a, K, O_{\Gamma}$ are obviously collinear. Let $I_{a}'$ be the reflection of $I_{a}$ over $O_{\Gamma}$. $I_{a}'$ lies on $BC$. Then after spotting that $I_{a}I_{a}' \parallel AL_{a}$ and projecting $(I,I_a; K, A)$ from $L_a$ onto $I_{a}I_{a}' $ we get what we needed.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SerdarBozdag
892 posts
#6 • 1 Y
Y by GeoKing
First problem. $G=AS \cap BC$ is on $(SID)$. $LI \cap ABC = J$. $A'$ is the antipode of $A$ and $S,I,A'$ are collinear. By radical axis theorem on $(ASFIE), (IJK), (ABC)$, $G$ is on $JK$. $H = IN \cap (SID)$. Let $I'$ be the reflection of $I$ across $N$.

$LIMI'$ is parallelogram so $LI' = MI = MK$ and $I'M \parallel JL \implies LJMI'$ is cyclic.

$\angle I'HJ + \angle JMI' = \angle ISJ + \angle JMI + \angle IMI' = \angle JAA' +\angle JMI + \angle JIM = \angle JAA' + 90 + \angle JKA =  \angle JAA' + 90^{\circ} + \angle JA'A = 180^{\circ} \implies H \in (LJMI')$.

$NA^2 = NM^2 = NM \cdot NL = NI' \cdot NH = NI \cdot NH \implies HMNA $ is cyclic. If tangents to $(SID)$ at $I$ and $H$ intersect at $Q$. $\angle NHQ = \angle HIQ = \angle HAN \implies HQ$ is tangent to $(HMNA)$.
Attachments:
This post has been edited 2 times. Last edited by SerdarBozdag, Jan 13, 2024, 8:00 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SerdarBozdag
892 posts
#7 • 1 Y
Y by GeoKing
Second problem. Let $G= EF \cap BC$. $(IMDG) \cap (I) = P$ , $(IMDG) \cap (IEF) = Q$, $(IMDG) \cap AI = L$, $PM \cap GL = S$, $N$ is the antipode of $I$ in $(IEF)$ and $AI \cap (I) = J$. I will prove that $A \in PQ$.

$\angle IQG = 90^{\circ} = \angle IQN \implies N \in QG$.

$\angle EID = 90^{\circ} - \frac{B}{2} = \angle JIF \implies J $ is the reflection of $D$ across $AI$. $\angle IJM = \angle IDM = \angle IPM = \angle IJP \implies J \in PM$. $\angle LGD = \angle DIJ = 2 \cdot \angle DIM = 2 \cdot \angle DGM \implies ML = MD \implies M$ is the center of $(SLJD)$.

$N,S,A$ are collinear $\iff$ (by Menelaus)
$$\frac{NM}{NI} \cdot \frac{IA}{AJ} \cdot \frac{JS}{SM} = 1$$This is true because $\frac{NM}{NI} = \cos^2 (\angle IFE) = \frac{1+\cos (90^{\circ} - \angle A/2) }{2}= \frac{JA}{IA} \cdot \frac{JS}{SM}$.

Applying Pascal on $PQG  LIM$ shows that $PQ \cap LI \in SN \implies A=PQ \cap LI$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NT_G
45 posts
#9 • 1 Y
Y by GeoKing
P2: (R.Prozorov's solution)
Let $R$ be the second intersection of $(IMD)$, $BC$. Obviously, $R$ lies on $EF$, and $IR$ is diameter of $(IMD)$.
$\angle IQD = \angle PQI$. So, using DIT for $ABDC$, we get that $\angle BQI = \angle CQI$.
$K = IQ \cap BC$. $IQ \perp QR$, therefore $(R,K; B,C) = -1 \Rightarrow $ $CE$, $BF$, $IQ$ are concurent. Using isogonal theorem for $\angle BQC$ and points $E$, $F$, we prove that $\angle EQI = \angle IQF$. Therefore, due to the equality: $IE = IF$, we get what we needed.
Attachments:
This post has been edited 1 time. Last edited by NT_G, Jan 15, 2024, 7:26 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SBYT
196 posts
#10 • 1 Y
Y by GeoKing
Another solution which is similar to NT_G's:
We get $(R,K;B,C)=-1$ the same way,$IK$ meets $EF$ at $N$.$(R,K;B,C)=-1\implies(IR,IK;IB,IC)=-1\implies(R,N;E,F)=-1\implies(QR,QN;QE,QF)=-1$.
Due to $IQ\perp RQ$,$IQ$ is the angle bisector of $\angle EQF$,and $IE=IF$,so $I,E,Q,F$ are concyclic.$\Box$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bin_sherlo
737 posts
#11 • 1 Y
Y by MS_asdfgzxcvb
I 'll present a solution to the first problem.
Let $AS\cap BC=R,MR\cap (ABC)=T$. Let $R,W'$ be the feet of the perpendicular from $P,N$ to $IN,PI$ respectively. Let $W,I'$ be the reflections of $I$ over $W',N$. Note that $P,T,I,R,S,D$ are concyclic.
Claim: $A,M,N,R$ are concyclic.
Proof: $A,P,K,W$ are concyclic because $IP.IW=IL.IT=IA.IK$ so $A,P,M,W'$ are concyclic. $IA.IM=IP.IW'=IN.IR$ which gives the result.
Let $PR\cap (AMNR)=V$ which is the antipode of $N$. Since $\measuredangle LAM=90$, we have $NA=NM$ and $NV$ is diameter thus, $NV\perp AI\perp IP$. Hence $(RPI)$ and $(RNV)$ are tangent to each other as desired.$\blacksquare$
Z K Y
N Quick Reply
G
H
=
a