Difference between revisions of "2006 AMC 12A Problems/Problem 1"

 
(Solution)
 
(20 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 +
{{duplicate|[[2006 AMC 12A Problems|2006 AMC 12A #1]] and [[2006 AMC 10A Problems|2006 AMC 10A #1]]}}
 
== Problem ==
 
== Problem ==
 +
Sandwiches at Joe's Fast Food cost <math>$3</math> each and sodas cost <math>$2</math> each. How many dollars will it cost to purchase <math>5</math> sandwiches and <math>8</math> sodas?
 +
 +
<math>\textbf{(A)}\ 31\qquad\textbf{(B)}\ 32\qquad\textbf{(C)}\ 33\qquad\textbf{(D)}\ 34\qquad\textbf{(E)}\ 35</math>
  
 
== Solution ==
 
== Solution ==
 +
The <math>5</math> sandwiches cost <math>5\cdot 3=15</math> dollars. The <math>8</math> sodas cost <math>8\cdot 2=16</math> dollars. In total, the purchase costs <math>15+16=\boxed{\textbf{(A) }31}</math> dollars.
  
 
== See also ==
 
== See also ==
* [[2006 AMC 12A Problems]]
+
{{AMC12 box|year=2006|ab=A|before=First Question|num-a=2}}
 +
{{AMC10 box|year=2006|ab=A|before=First Question|num-a=2}}
 +
{{MAA Notice}}
 +
 
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 16:20, 16 December 2021

The following problem is from both the 2006 AMC 12A #1 and 2006 AMC 10A #1, so both problems redirect to this page.

Problem

Sandwiches at Joe's Fast Food cost $$3$ each and sodas cost $$2$ each. How many dollars will it cost to purchase $5$ sandwiches and $8$ sodas?

$\textbf{(A)}\ 31\qquad\textbf{(B)}\ 32\qquad\textbf{(C)}\ 33\qquad\textbf{(D)}\ 34\qquad\textbf{(E)}\ 35$

Solution

The $5$ sandwiches cost $5\cdot 3=15$ dollars. The $8$ sodas cost $8\cdot 2=16$ dollars. In total, the purchase costs $15+16=\boxed{\textbf{(A) }31}$ dollars.

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png