Difference between revisions of "2018 AMC 10A Problems/Problem 12"
(→Solution 2) |
(→Solution 2) |
||
Line 40: | Line 40: | ||
<math>|3y-3-y| = |2y-3| = 1</math> | <math>|3y-3-y| = |2y-3| = 1</math> | ||
− | Subcase 1: <math>y>3 | + | Subcase 1: <math>y>\frac{3}{2}</math> |
<math>2y-3</math> is positive so <math>2y-3 = 1</math> and <math>y = 2</math> and <math>x = 3-3(2) = -3</math> | <math>2y-3</math> is positive so <math>2y-3 = 1</math> and <math>y = 2</math> and <math>x = 3-3(2) = -3</math> | ||
− | Subcase 2: <math>1<y<3 | + | Subcase 2: <math>1<y<\frac{3}{2}</math> |
<math>2y-3</math> is negative so <math>|2y-3| = 3-2y = 1</math>. <math>2y = 2</math> and so there are no solutions (<math>y</math> can't equal to <math>1</math>) | <math>2y-3</math> is negative so <math>|2y-3| = 3-2y = 1</math>. <math>2y = 2</math> and so there are no solutions (<math>y</math> can't equal to <math>1</math>) | ||
Line 53: | Line 53: | ||
<math>3-3y</math> will be positive so <math>|3-3y-y| = |3-4y| = 1</math> | <math>3-3y</math> will be positive so <math>|3-3y-y| = |3-4y| = 1</math> | ||
− | Subcase 1: <math>y>4 | + | Subcase 1: <math>y>\frac{4}{3}</math> |
<math>3-4y</math> will be negative so <math>4y-3 = 1</math> \rightarrow <math>4y = 4</math>. There are no solutions (again, <math>y</math> can't equal to <math>1</math>) | <math>3-4y</math> will be negative so <math>4y-3 = 1</math> \rightarrow <math>4y = 4</math>. There are no solutions (again, <math>y</math> can't equal to <math>1</math>) | ||
− | Subcase 2: y<4/ | + | Subcase 2: <math>y<\frac{4}{3}</math> |
<math>3-4y</math> will be positive so <math>3-4y = 1</math> \rightarrow <math>4y = 2</math>. <math>y = \frac{1}{2}</math> and <math>x = \frac{3}{2}</math>. | <math>3-4y</math> will be positive so <math>3-4y = 1</math> \rightarrow <math>4y = 2</math>. <math>y = \frac{1}{2}</math> and <math>x = \frac{3}{2}</math>. | ||
Revision as of 22:46, 8 February 2018
Contents
[hide]Problem
How many ordered pairs of real numbers satisfy the following system of equations?
Solution
The graph looks something like this:
Now it's clear that there are intersection points. (pinetree1)
Solution 2
can be rewritten to . Substituting for in the second equation will give . Splitting this question into casework for the ranges of y will give us the total number of solutions.
will be negative so
Subcase 1:
is positive so and and
Subcase 2:
is negative so . and so there are no solutions ( can't equal to )
It is fairly clear that
will be positive so
Subcase 1:
will be negative so \rightarrow . There are no solutions (again, can't equal to )
Subcase 2:
will be positive so \rightarrow . and .
Thus, the solutions are: , and the answer is or
Solution by Danny Li JHS, edit by pretzel.
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 9 |
Followed by Problem 11 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.