Difference between revisions of "2018 AMC 10A Problems/Problem 25"

m (Solution 1)
Line 10: Line 10:
  
  
Observe <math>A_n = a(1 + 10 + \dots + 10^{n - 1}) = a \cdot \tfrac{10^n - 1}{9}</math>; similarly <math>B_n = b \cdot \tfrac{10^n - 1}{9}</math> and <math>C_n = c \cdot \tfrac{10^{2n} - 1}{9}</math>. The relation <math>C_n - B_n = A_n^2</math> rewrites as
+
Observe <math>A_n = a(1 + 10 + \dots + 10^{n - 1}) = a \cdot \tfrac{10^n - 1}{9}</math>; similarly, <math>B_n = b \cdot \tfrac{10^n - 1}{9}</math> and <math>C_n = c \cdot \tfrac{10^{2n} - 1}{9}</math>. The relation <math>C_n - B_n = A_n^2</math> rewrites as
 
<cmath>c \cdot \frac{10^{2n} - 1}{9} - b \cdot \frac{10^n - 1}{9} = a^2 \cdot \left(\frac{10^n - 1}{9}\right)^2.</cmath>Since <math>n > 0</math>, <math>10^n > 1</math> and we may cancel out a factor of <math>\tfrac{10^n - 1}{9}</math> to obtain
 
<cmath>c \cdot \frac{10^{2n} - 1}{9} - b \cdot \frac{10^n - 1}{9} = a^2 \cdot \left(\frac{10^n - 1}{9}\right)^2.</cmath>Since <math>n > 0</math>, <math>10^n > 1</math> and we may cancel out a factor of <math>\tfrac{10^n - 1}{9}</math> to obtain
 
<cmath>c \cdot (10^n + 1) - b = a^2 \cdot \frac{10^n - 1}{9}.</cmath>This is a linear equation in <math>10^n</math>. Thus, if two distinct values of <math>n</math> satisfy it, then all values of <math>n</math> will. Now we plug in <math>n=0</math> and <math>n=1</math> (or some other number), we get <math>2c - b = 0</math> and <math>11c - b= a^2</math> . Solving the equations for <math>c</math> and <math>b</math>, we get <cmath>c = \frac{a^2}{9} \quad \text{and} \quad c - b = -\frac{a^2}{9} \implies b = \frac{2a^2}{9}.</cmath>To maximize <math>a + b + c = a + \tfrac{a^2}{3}</math>, we need to maximize <math>a</math>. Since <math>b</math> and <math>c</math> must be integers, <math>a</math> must be a multiple of <math>3</math>. If <math>a = 9</math> then <math>b</math> exceeds <math>9</math>. However, if <math>a = 6</math> then <math>b = 8</math> and <math>c = 4</math> for an answer of <math>\boxed{\textbf{(D)} \text{ 18}}</math>.
 
<cmath>c \cdot (10^n + 1) - b = a^2 \cdot \frac{10^n - 1}{9}.</cmath>This is a linear equation in <math>10^n</math>. Thus, if two distinct values of <math>n</math> satisfy it, then all values of <math>n</math> will. Now we plug in <math>n=0</math> and <math>n=1</math> (or some other number), we get <math>2c - b = 0</math> and <math>11c - b= a^2</math> . Solving the equations for <math>c</math> and <math>b</math>, we get <cmath>c = \frac{a^2}{9} \quad \text{and} \quad c - b = -\frac{a^2}{9} \implies b = \frac{2a^2}{9}.</cmath>To maximize <math>a + b + c = a + \tfrac{a^2}{3}</math>, we need to maximize <math>a</math>. Since <math>b</math> and <math>c</math> must be integers, <math>a</math> must be a multiple of <math>3</math>. If <math>a = 9</math> then <math>b</math> exceeds <math>9</math>. However, if <math>a = 6</math> then <math>b = 8</math> and <math>c = 4</math> for an answer of <math>\boxed{\textbf{(D)} \text{ 18}}</math>.

Revision as of 12:48, 31 December 2020

The following problem is from both the 2018 AMC 12A #25 and 2018 AMC 10A #25, so both problems redirect to this page.

Problem

For a positive integer $n$ and nonzero digits $a$, $b$, and $c$, let $A_n$ be the $n$-digit integer each of whose digits is equal to $a$; let $B_n$ be the $n$-digit integer each of whose digits is equal to $b$, and let $C_n$ be the $2n$-digit (not $n$-digit) integer each of whose digits is equal to $c$. What is the greatest possible value of $a + b + c$ for which there are at least two values of $n$ such that $C_n - B_n = A_n^2$?

$\textbf{(A)} \text{ 12} \qquad \textbf{(B)} \text{ 14} \qquad \textbf{(C)} \text{ 16} \qquad \textbf{(D)} \text{ 18} \qquad \textbf{(E)} \text{ 20}$

Solution 1

Observe $A_n = a(1 + 10 + \dots + 10^{n - 1}) = a \cdot \tfrac{10^n - 1}{9}$; similarly, $B_n = b \cdot \tfrac{10^n - 1}{9}$ and $C_n = c \cdot \tfrac{10^{2n} - 1}{9}$. The relation $C_n - B_n = A_n^2$ rewrites as \[c \cdot \frac{10^{2n} - 1}{9} - b \cdot \frac{10^n - 1}{9} = a^2 \cdot \left(\frac{10^n - 1}{9}\right)^2.\]Since $n > 0$, $10^n > 1$ and we may cancel out a factor of $\tfrac{10^n - 1}{9}$ to obtain \[c \cdot (10^n + 1) - b = a^2 \cdot \frac{10^n - 1}{9}.\]This is a linear equation in $10^n$. Thus, if two distinct values of $n$ satisfy it, then all values of $n$ will. Now we plug in $n=0$ and $n=1$ (or some other number), we get $2c - b = 0$ and $11c - b= a^2$ . Solving the equations for $c$ and $b$, we get \[c = \frac{a^2}{9} \quad \text{and} \quad c - b = -\frac{a^2}{9} \implies b = \frac{2a^2}{9}.\]To maximize $a + b + c = a + \tfrac{a^2}{3}$, we need to maximize $a$. Since $b$ and $c$ must be integers, $a$ must be a multiple of $3$. If $a = 9$ then $b$ exceeds $9$. However, if $a = 6$ then $b = 8$ and $c = 4$ for an answer of $\boxed{\textbf{(D)} \text{ 18}}$.

Solution 2

Immediately start trying $n = 1$ and $n = 2$. These give the system of equations $11c - b = a^2$ and $1111c - 11b = (11a)^2$ (which simplifies to $101c - b = 11a^2$). These imply that $a^2 = 9c$, so the possible $(a, c)$ pairs are $(9, 9)$, $(6, 4)$, and $(3, 1)$. The first puts $b$ out of range but the second makes $b = 8$. We now know the answer is at least $6 + 8 + 4 = 18$.

We now only need to know whether $a + b + c = 20$ might work for any larger $n$. We will always get equations like $100001c - b = 11111a^2$ where the $c$ coefficient is very close to being nine times the $a$ coefficient. Since the $b$ term will be quite insignificant, we know that once again $a^2$ must equal $9c$, and thus $a = 9, c = 9$ is our only hope to reach $20$. Substituting and dividing through by $9$, we will have something like $100001 - \frac{b}{9} = 99999$. No matter what $n$ really was, $b$ is out of range (and certainly isn't $2$ as we would have needed).

The answer then is $\boxed{\textbf{(D)} \text{ 18}}$.

Solution 3 (Cheating)

Notice that $(0.\overline{3})^2 = 0.\overline{1}$ and $(0.\overline{6})^2 = 0.\overline{4}$. Setting $a = 3$ and $c = 1$, we see $b = 2$ works for all possible values of $n$. Similarly, if $a = 6$ and $c = 4$, then $b = 8$ works for all possible values of $n$. The second solution yields a greater sum of $\boxed{\textbf{(D)} \text{ 18}}$.

Video Solution by Richard Rusczyk

https://artofproblemsolving.com/videos/amc/2018amc10a/470

~ dolphin7

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png