Difference between revisions of "2018 AMC 10A Problems/Problem 9"
(→Solution 2) |
(→Solution 3) |
||
Line 23: | Line 23: | ||
==Solution 1== | ==Solution 1== | ||
Let <math>x</math> be the area of <math>ADE</math>. Note that <math>x</math> is comprised of the <math>7</math> small isosceles triangles and a triangle similar to <math>ADE</math> with side length ratio <math>3:4</math> (so an area ratio of <math>9:16</math>). Thus, we have <cmath>x=7+\dfrac{9}{16}x</cmath> This gives <math>x=16</math>, so the area of <math>DBCE=40-x=\boxed{24}</math>. | Let <math>x</math> be the area of <math>ADE</math>. Note that <math>x</math> is comprised of the <math>7</math> small isosceles triangles and a triangle similar to <math>ADE</math> with side length ratio <math>3:4</math> (so an area ratio of <math>9:16</math>). Thus, we have <cmath>x=7+\dfrac{9}{16}x</cmath> This gives <math>x=16</math>, so the area of <math>DBCE=40-x=\boxed{24}</math>. | ||
− | |||
− | |||
− | |||
== See Also == | == See Also == |
Revision as of 11:35, 9 February 2018
All of the triangles in the diagram below are similar to iscoceles triangle , in which . Each of the 7 smallest triangles has area 1, and has area 40. What is the area of trapezoid ?
Solution 1
Let be the area of . Note that is comprised of the small isosceles triangles and a triangle similar to with side length ratio (so an area ratio of ). Thus, we have This gives , so the area of .
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.