Difference between revisions of "2018 AMC 10A Problems/Problem 7"
Premchandj (talk | contribs) m |
m (Added Problem heading) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
For how many (not necessarily positive) integer values of <math>n</math> is the value of <math>4000\cdot \left(\tfrac{2}{5}\right)^n</math> an integer? | For how many (not necessarily positive) integer values of <math>n</math> is the value of <math>4000\cdot \left(\tfrac{2}{5}\right)^n</math> an integer? | ||
Revision as of 01:30, 5 December 2019
Problem
For how many (not necessarily positive) integer values of is the value of an integer?
Solution
The prime factorization of is . Therefore, the maximum number for is , and the minimum number for is . Then we must find the range from to , which is .
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 6 |
Followed by Problem 8 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.