Difference between revisions of "2018 AMC 10A Problems/Problem 25"
Cocohearts (talk | contribs) (→Solution) |
|||
Line 5: | Line 5: | ||
<math>\textbf{(A)} \text{ 12} \qquad \textbf{(B)} \text{ 14} \qquad \textbf{(C)} \text{ 16} \qquad \textbf{(D)} \text{ 18} \qquad \textbf{(E)} \text{ 20}</math> | <math>\textbf{(A)} \text{ 12} \qquad \textbf{(B)} \text{ 14} \qquad \textbf{(C)} \text{ 16} \qquad \textbf{(D)} \text{ 18} \qquad \textbf{(E)} \text{ 20}</math> | ||
− | == Solution == | + | == Solution 1== |
Line 12: | Line 12: | ||
<cmath>c \cdot (10^n + 1) - b = a^2 \cdot \frac{10^n - 1}{9}.</cmath>This is a linear equation in <math>10^n</math>. Thus, if two distinct values of <math>n</math> satisfy it, then all values of <math>n</math> will. Matching coefficients, we need | <cmath>c \cdot (10^n + 1) - b = a^2 \cdot \frac{10^n - 1}{9}.</cmath>This is a linear equation in <math>10^n</math>. Thus, if two distinct values of <math>n</math> satisfy it, then all values of <math>n</math> will. Matching coefficients, we need | ||
<cmath>c = \frac{a^2}{9} \quad \text{and} \quad c - b = -\frac{a^2}{9} \implies b = \frac{2a^2}{9}.</cmath>To maximize <math>a + b + c = a + \tfrac{a^2}{3}</math>, we need to maximize <math>a</math>. Since <math>b</math> and <math>c</math> must be integers, <math>a</math> must be a multiple of 3. If <math>a = 9</math> then <math>b</math> exceeds 9. However, if <math>a = 6</math> then <math>b = 8</math> and <math>c = 4</math> for an answer of <math>\boxed{\textbf{(D)} \text{ 18}}</math>. (CantonMathGuy) | <cmath>c = \frac{a^2}{9} \quad \text{and} \quad c - b = -\frac{a^2}{9} \implies b = \frac{2a^2}{9}.</cmath>To maximize <math>a + b + c = a + \tfrac{a^2}{3}</math>, we need to maximize <math>a</math>. Since <math>b</math> and <math>c</math> must be integers, <math>a</math> must be a multiple of 3. If <math>a = 9</math> then <math>b</math> exceeds 9. However, if <math>a = 6</math> then <math>b = 8</math> and <math>c = 4</math> for an answer of <math>\boxed{\textbf{(D)} \text{ 18}}</math>. (CantonMathGuy) | ||
+ | |||
+ | == Solution 2== | ||
==See Also== | ==See Also== |
Revision as of 19:54, 8 February 2018
Contents
Problem
For a positive integer and nonzero digits , , and , let be the -digit integer each of whose digits is equal to ; let be the -digit integer each of whose digits is equal to , and let be the -digit (not -digit) integer each of whose digits is equal to . What is the greatest possible value of for which there are at least two values of such that ?
Solution 1
Observe ; similarly and . The relation rewrites as Since , and we may cancel out a factor of to obtain This is a linear equation in . Thus, if two distinct values of satisfy it, then all values of will. Matching coefficients, we need To maximize , we need to maximize . Since and must be integers, must be a multiple of 3. If then exceeds 9. However, if then and for an answer of . (CantonMathGuy)
Solution 2
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.