2006 AMC 12A Problems/Problem 12

Revision as of 10:13, 15 February 2007 by JBL (talk | contribs)

Problem

A number of linked rings, each 1 cm thick, are hanging on a peg. The top ring has an outisde diameter of 20 cm. The outside diameter of each of the outer rings is 1 cm less than that of the ring above it. The bottom ring has an outside diameter of 3 cm. What is the distance, in cm, from the top of the top ring to the bottom of the bottom ring?


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


$\mathrm{(A) \ } 171\qquad\mathrm{(B) \ } 173\qquad\mathrm{(C) \ } 182\qquad\mathrm{(D) \ } 188\qquad\mathrm{(E) \ } 210\qquad$

Solution

The inside diameters of the rings are the positive integers from 1 to 18. The total distance needed is the sum of these values plus 2 for the top of the first ring and the bottom of the last ring. Using the formula for the sum of an arithmetic series, the answer is $\frac{18 \cdot 19}{2} + 2 = 173 \Rightarrow \mathrm{(B)}$.

Alternatively, the sum of the consecutive integers from 3 to 20 is $\frac{1}{2}(18)(3+20) = 207$. However, the 17 intersections between the rings must be subtracted, and we also get $207 - 2(17) = 173$.

See Also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions