2018 AMC 10A Problems/Problem 24

Revision as of 14:45, 8 February 2018 by Benq (talk | contribs)

Problem

Triangle $ABC$ with $AB=50$ and $AC=10$ has area $120$. Let $D$ be the midpoint of $\overline{AB}$, and let $E$ be the midpoint of $\overline{AC}$. The angle bisector of $\angle BAC$ intersects $\overline{DE}$ and $\overline{BC}$ at $F$ and $G$, respectively. What is the area of quadrilateral $FDBG$?

$\textbf{(A) }60 \qquad \textbf{(B) }65 \qquad \textbf{(C) }70 \qquad \textbf{(D) }75 \qquad \textbf{(E) }80 \qquad$

Solution

By angle bisector theorem, $BG=\frac{5a}{6}$. By similar triangles, $DF=\frac{5a}{12}$, and the height of this trapezoid is $\frac{h}{2}$, where $h$ is the length of the altitude to $BC$. Then $\frac{ah}{2}=120$ and we wish to compute $\frac{5a}{8}\cdot\frac{h}{2}=\boxed{75}$. (trumpeter)

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png