Difference between revisions of "2018 AMC 10A Problems/Problem 23"

(hardness of problem)
m (Solution 2 (Area Addition))
(33 intermediate revisions by 8 users not shown)
Line 3: Line 3:
 
== Problem ==
 
== Problem ==
  
Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths 3 and 4 units. In the corner where those sides meet at a right angle, he leaves a small unplanted square <math>S</math> so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from <math>S</math> to the hypotenuse is 2 units. What fraction of the field is planted?
+
Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths <math>3</math> and <math>4</math> units. In the corner where those sides meet at a right angle, he leaves a small unplanted square <math>S</math> so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from <math>S</math> to the hypotenuse is <math>2</math> units. What fraction of the field is planted?
  
 
<asy>
 
<asy>
draw((0,0)--(4,0)--(0,3)--(0,0));
+
/* Edited by MRENTHUSIASM */
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
+
size(160);
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
+
pair A, B, C, D, F;
label("$4$", (2,0), N);
+
A = origin;
label("$3$", (0,1.5), E);
+
B = (4,0);
label("$2$", (.8,1), E);
+
C = (0,3);
label("$S$", (0,0), NE);
+
D = (2/7,2/7);
draw((0.3,0.3)--(1.4,1.9), dashed);
+
F = foot(D,B,C);
 +
fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray);
 +
draw(A--B--C--cycle);
 +
draw((2/7,0)--D--(0,2/7));
 +
label("$4$", midpoint(A--B), N);
 +
label("$3$", midpoint(A--C), E);
 +
label("$2$", midpoint(D--F), SE);
 +
label("$S$", midpoint(A--D));
 +
draw(D--F, dashed);
 
</asy>
 
</asy>
  
 
<math>\textbf{(A) }  \frac{25}{27}  \qquad        \textbf{(B) }  \frac{26}{27}  \qquad    \textbf{(C) }  \frac{73}{75}  \qquad  \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }  \frac{74}{75} </math>
 
<math>\textbf{(A) }  \frac{25}{27}  \qquad        \textbf{(B) }  \frac{26}{27}  \qquad    \textbf{(C) }  \frac{73}{75}  \qquad  \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }  \frac{74}{75} </math>
  
==Solution 1==
+
==Solution 1 (Area Addition)==
Let the square have side length <math>x</math>. Connect the upper-right vertex of square <math>S</math> with the two vertices of the triangle's hypotenuse. This divides the triangle in several regions whose areas must add up to the area of the whole triangle, which is <math>6</math>.
+
Note that the hypotenuse of the field is <math>5,</math> and the area of the field is <math>6.</math> Let <math>x</math> be the side-length of square <math>S.</math>
  
 +
We partition the field into a red triangle, a yellow triangle, and a green triangle, as shown below:
 
<asy>
 
<asy>
draw((0,0)--(4,0)--(0,3)--(0,0));
+
/* Edited by MRENTHUSIASM */
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
+
size(180);
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
+
pair A, B, C, D, F;
label("$4$", (2,0), S);
+
A = origin;
label("$3$", (0,1.5), W);
+
B = (4,0);
label("$2$", (.8,1), E);
+
C = (0,3);
label("$S$", (0,0), NE);
+
D = (2/7,2/7);
draw((0.3,0.3)--(1.4,1.9), dashed);
+
F = foot(D,B,C);
draw((0.3,0.3)--(4,0), dashed);
+
fill(A--D--C--cycle, red);
draw((0.3,0.3)--(0,3), dashed);
+
fill(A--D--B--cycle, yellow);
label("$\small{x}$", (0.15,0.3), N);
+
fill(B--D--C--cycle, green);
label("$\small{x}$", (0.3,0.15), E);
+
draw(A--B--C--cycle);
 +
label("$5$", midpoint(B--C), NE);
 +
label("$4$", midpoint(A--B), S);
 +
label("$3$", midpoint(A--C), W);
 +
label("$2$", midpoint(D--F), SE);
 +
label("$S$", midpoint(A--D));
 +
label("$x$", midpoint((0,2/7)--D), N);
 +
label("$x$", midpoint((2/7,0)--D), E);
 +
draw((2/7,0)--D--(0,2/7));
 +
draw(A--D^^B--D^^C--D, dashed);
 +
draw(D--F, dashed);
 
</asy>
 
</asy>
 +
Let the brackets denote areas. By area addition, we set up an equation for <math>x:</math>
 +
<cmath>\begin{align*}
 +
[\text{Red Triangle}]+[\text{Yellow Triangle}]+[\text{Green Triangle}]&=[\text{Field}] \\
 +
\frac{3x}{2}+\frac{4x}{2}+\frac{5\cdot2}{2}&=6,
 +
\end{align*}</cmath>
 +
from which <math>x=\frac27.</math> Therefore, the answer is <cmath>\frac{[\text{Field}]-[S]}{[\text{Field}]}=\frac{6-x^2}{6}=\boxed{\textbf{(D) } \frac{145}{147}}.</cmath>
 +
~MRENTHUSIASM
  
Square <math>S</math> has area <math>x^2</math>, and the two thin triangle regions have area <math>\dfrac{x(3-x)}{2}</math> and <math>\dfrac{x(4-x)}{2}</math>. The final triangular region with the hypotenuse as its base and height <math>2</math> has area <math>5</math>. Thus, we have <cmath>x^2+\dfrac{x(3-x)}{2}+\dfrac{x(4-x)}{2}+5=6</cmath>
+
==Solution 2 (Area Addition)==
 
+
Let the square have side length <math>x</math>. Connect the upper-right vertex of square <math>S</math> with the two vertices of the triangle's hypotenuse. This divides the triangle in several regions whose areas must add up to the area of the whole triangle, which is <math>6</math>.
Solving gives <math>x=\dfrac{2}{7}</math>. The area of <math>S</math> is <math>\dfrac{4}{49}</math> and the desired ratio is <math>\dfrac{6-\dfrac{4}{49}}{6}=\boxed{\dfrac{145}{147}}</math>.
 
 
 
Alternatively, once you get <math>x=\frac{2}{7}</math>, you can avoid computation by noticing that there is a denominator of <math>7</math>, so the answer must have a factor of <math>7</math> in the denominator, which only <math>\boxed{\dfrac{145}{147}}</math> does.
 
 
 
==Solution 2==
 
Let the square have side length <math>s</math>. If we were to extend the sides of the square further into the triangle until they intersect on point on the hypotenuse, we'd have a similar right triangle formed between the hypotenuse and the two new lines, and 2 smaller similar triangles that share a side of length 2. Using the side-to-side ratios of these triangles, we can find that the length of the larger similar triangle is <math>\frac{5}{3}(2)=\frac{10}{3}</math>. Now, let's extend this larger similar right triangle to the left until it hits the side of length 3. Now, the length is <math>\frac{10}{3}+s</math>, and using the ratios of the side lengths, the height is <math>\frac{3}{4}(\frac{10}{3}+s)=\frac{5}{2}+\frac{3s}{4}</math>. Looking at the diagram, if we add the height of this triangle to the side length of the square, we'd get 3, so <cmath>\frac{5}{2}+\frac{3s}{4}+s=\frac{5}{2}+\frac{7s}{4}=3 \\ \frac{7s}{4}=\frac{1}{2} \\ s=\frac{2}{7} \implies \textrm{ area of square is } (\frac{2}{7})^2=\frac{4}{49}</cmath>
 
 
 
Now comes the easy part: finding the ratio of the areas: <math>\frac{3\cdot 4 \cdot \frac{1}{2} -\frac{4}{49}}{3\cdot 4 \cdot \frac{1}{2}}=\frac{6-\frac{4}{49}}{6}=\frac{294-4}{294}=\frac{290}{294}=\boxed{\frac{145}{147}}</math>.
 
 
 
==Solution 3==
 
We use coordinate geometry. Let the right angle be at <math>(0,0)</math> and the hypotenuse be the line <math>3x+4y = 12</math> for <math>0\le x\le 3</math>. Denote the position of <math>S</math> as <math>(s,s)</math>, and by the point to line distance formula, we know that <cmath>\frac{|3s+4s-12|}{5} = 2</cmath> <cmath>\Rightarrow |7s-12| = 10</cmath> Obviously <math>s<\frac{22}{7}</math>, so <math>s = \frac{2}{7}</math>, and from here the rest of the solution follows to get <math>\boxed{\frac{145}{147}}</math>.
 
 
 
==Solution 4==
 
Let the side length of the square be <math>x</math>. First off, let us make a similar triangle with the segment of length <math>2</math> and the top-right corner of <math>S</math>. Therefore, the longest side of the smaller triangle must be <math>2 \cdot \frac54 = \frac52</math>. We then do operations with that side in terms of <math>x</math>. We subtract <math>x</math> from the bottom, and <math>\frac{3x}{4}</math> from the top. That gives us the equation of <math>3-\frac{7x}{4} = \frac{5}{2}</math>. Solving, <cmath>12-7x = 10 \implies x = \frac{2}{7}.</cmath>
 
 
 
Thus, <math>x^2 = \frac{4}{49}</math>, so the fraction of the triangle (area <math>6</math>) covered by the square is <math>\frac{2}{147}</math>. The answer is then <math>\boxed{\dfrac{145}{147}}</math>.
 
 
 
==Solution 5==
 
 
<asy>
 
<asy>
draw((0,0)--(4,0)--(0,3)--(0,0));
+
/* Edited by MRENTHUSIASM */
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
+
size(180);
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
+
pair A, B, C, D, F;
draw((0.3,0.3)--(3.6,0.3), dashed);
+
A = origin;
draw((0.3,2.7)--(0.3,0.3), dashed);
+
B = (4,0);
label("$S$", (-0.05,-0.05), NE);
+
C = (0,3);
draw((0.3,0.3)--(1.41,1.91));
+
D = (2/7,2/7);
draw((1.63,1.78)--(1.48,1.56));
+
F = foot(D,B,C);
draw((1.28,1.70)--(1.48,1.56));
+
fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray);
label("$4$", (2,0), S);
+
draw(A--B--C--cycle);
label("$3$", (0,1.5), W);
+
label("$5$", midpoint(B--C), NE);
label("$\frac{10}{3}$", (2,0.3), N);
+
label("$4$", midpoint(A--B), S);
label("$\frac{5}{2}$", (0.3,1.5), E);
+
label("$3$", midpoint(A--C), W);
label("$2$", (1,1.2), E);
+
label("$2$", midpoint(D--F), SE);
draw((3.6,0)--(3.6,0.3), dashed);
+
label("$S$", midpoint(A--D));
draw((0,2.7)--(0.3,2.7), dashed);
+
label("$x$", midpoint((0,2/7)--D), N);
label("$\small{l}$", (3.6,0.15), W);
+
label("$x$", midpoint((2/7,0)--D), E);
label("$\small{l}$", (0.15,2.7), S);
+
draw((2/7,0)--D--(0,2/7));
label("$\small{l}$", (0.3,0.15), E);
+
draw(B--D^^C--D, dashed);
label("$\small{l}$", (0.15,0.3), N);
+
draw(D--F, dashed);
 
</asy>
 
</asy>
 +
Square <math>S</math> has area <math>x^2</math>, and the two thin triangle regions have area <math>\dfrac{x(3-x)}{2}</math> and <math>\dfrac{x(4-x)}{2}</math>. The final triangular region with the hypotenuse as its base and height <math>2</math> has area <math>5</math>. Thus, we have <cmath>x^2+\dfrac{x(3-x)}{2}+\dfrac{x(4-x)}{2}+5=6.</cmath>
 +
Solving gives <math>x=\dfrac{2}{7}</math>. The area of <math>S</math> is <math>\dfrac{4}{49}</math> and the desired ratio is <math>\dfrac{6-\tfrac{4}{49}}{6}=\boxed{\textbf{(D) } \frac{145}{147}}</math>.
  
On the diagram above, find two smaller triangles similar to the large one with side lengths <math>3</math>, <math>4</math>, and <math>5</math>; consequently, the segments with length <math>\frac{5}{2}</math> and <math>\frac{10}{3}</math>.
+
Alternatively, once you get <math>x=\frac{2}{7}</math>, you can avoid computation by noticing that there is a denominator of <math>7</math>, so the answer must have a factor of <math>7</math> in the denominator, which only <math>\frac{145}{147}</math> does.
  
With <math>l</math> being the side length of the square, we need to find an expression for <math>l</math>. Using the hypotenuse, we can see that <math>\frac{3}{2}+\frac{8}{3}+\frac{5}{4}l+\frac{5}{3}l=5</math>. Simplifying, <math>\frac{35}{12}l=\frac{5}{6}</math>, or <math>l=2/7</math>.
+
==Solution 3 (Similar Triangles)==
 +
Let the square have side length <math>s</math>. If we were to extend the sides of the square further into the triangle until they intersect on point on the hypotenuse, we'd have a similar right triangle formed between the hypotenuse and the two new lines, and two smaller similar triangles that share a side of length <math>2</math>. Using the side-to-side ratios of these triangles, we can find that the length of the larger similar triangle is <math>\frac{5}{3}(2)=\frac{10}{3}</math>. Now, let's extend this larger similar right triangle to the left until it hits the side of length <math>3</math>. Now, the length is <math>\frac{10}{3}+s</math>, and using the ratios of the side lengths, the height is <math>\frac{3}{4}\left(\frac{10}{3}+s\right)=\frac{5}{2}+\frac{3s}{4}</math>. Looking at the diagram, if we add the height of this triangle to the side length of the square, we'd get <math>3</math>, so
 +
<cmath>\begin{align*}
 +
\frac{5}{2}+\frac{3s}{4}+s&=3 \\
 +
\frac{5}{2}+\frac{7s}{4}&=3 \\
 +
\frac{7s}{4}&=\frac{1}{2} \\
 +
s&=\frac{2}{7}.
 +
\end{align*}</cmath>
 +
So, the area of the square is <math>\left(\frac{2}{7}\right)^2=\frac{4}{49}</math>.
  
A different calculation would yield <math>l+\frac{3}{4}l+\frac{5}{2}=3</math>, so <math>\frac{7}{4}l=\frac{1}{2}</math>. In other words, <math>l=\frac{2}{7}</math>, while to check, <math>l+\frac{4}{3}l+\frac{10}{3}=4</math>. As such, <math>\frac{7}{3}l=\frac{2}{3}</math>, and <math>l=\frac{2}{7}</math>.
+
Now comes the easy part--finding the ratio of the areas: <math>\frac{3\cdot 4 \cdot \frac{1}{2} -\frac{4}{49}}{3\cdot 4 \cdot \frac{1}{2}}=\frac{6-\frac{4}{49}}{6}=\frac{294-4}{294}=\frac{290}{294}=\boxed{\textbf{(D) } \frac{145}{147}}</math>.
 
 
Finally, we get <math>A(\Square S)=l^2=\frac{4}{49}</math>, to finish. As a proportion of the triangle with area <math>6</math>, the answer would be <math>1-\frac{4}{49\cdot6}=1-\frac{2}{147}=\frac{145}{147}</math>, so <math>\boxed{\textit D}</math> is correct.
 
 
 
== Solution 6: Also Coordinate Geo ==
 
Let the right angle be at <math>(0,0)</math>, the point <math>(x,x)</math> be the far edge of the unplanted square and the hypotenuse be the line <math>y=-\frac{3}{4}x+3</math>. Since the line from <math>(x,x)</math> to the hypotenuse is the shortest possible distance, we know this line, call it line <math>\l</math>, is perpendicular to the hypotenuse and therefore has a slope of <math>\frac{4}{3}</math>.
 
 
 
Since we know <math>m=\frac{4}{3}</math> , we can see that the line rises by <math>\frac{8}{5}</math> and moves to the right by <math>\frac{6}{5}</math> to meet the hypotenuse. (Let <math>2 = 5x</math> and the rise be <math>4x</math> and the run be <math>3x</math> and then solve.) Therefore, line <math>\l</math> intersects the hypotenuse at the point <math>(x+\frac{6}{5}, x+\frac{8}{5})</math>. Plugging into the equation for the hypotenuse we have <math>x=\frac{2}{7}</math> , and after a bit of computation we get <math>\boxed{\textbf{(D) } \frac{145}{147}}</math>
 
 
 
 
 
 
 
==Solution 7(Slightly different from first solution):==
 
Same drawing as before:
 
  
 +
==Solution 4 (Similar Triangles)==
 
<asy>
 
<asy>
draw((0,0)--(4,0)--(0,3)--(0,0));
+
/* Edited by MRENTHUSIASM */
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
+
size(180);
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
+
pair A, B, C, D, F;
label("$4$", (2,0), S);
+
A = origin;
label("$3$", (0,1.5), W);
+
B = (4,0);
label("$2$", (.8,1), E);
+
C = (0,3);
label("$S$", (0,0), NE);
+
D = (2/7,2/7);
draw((0.3,0.3)--(1.4,1.9), dashed);
+
F = foot(D,B,C);
draw((0.3,0.3)--(4,0), dashed);
+
fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray);
draw((0.3,0.3)--(0,3), dashed);
+
draw(A--B--C--cycle);
label("$\small{a}$", (0.15,0.3), N);
+
label("$4$", midpoint(A--B), S);
label("$\small{a}$", (0.3,0.15), E);
+
label("$3$", midpoint(A--C), W);
 +
label("$2$", midpoint(D--F), SE);
 +
label("$S$", midpoint(A--D));
 +
label("$\ell$", midpoint((0,2/7)--D), N);
 +
label("$\ell$", midpoint((2/7,0)--D), E);
 +
label("$\ell$", midpoint((2/7,2/7+5/2)--(0,2/7+5/2)), S);
 +
label("$\ell$", midpoint((2/7+10/3,2/7)--(2/7+10/3,0)), W);
 +
label("$\frac{5}{2}$", midpoint((2/7,2/7+5/2)--D), E);
 +
label("$\frac{10}{3}$", midpoint((2/7+10/3,2/7)--D), N);
 +
draw((2/7,0)--D--(0,2/7));
 +
draw((2/7,2/7+5/2)--D^^(2/7+10/3,2/7)--D, dashed);
 +
draw((2/7,2/7+5/2)--(0,2/7+5/2)^^(2/7+10/3,2/7)--(2/7+10/3,0), dashed);
 +
draw(D--F, dashed);
 
</asy>
 
</asy>
 +
On the diagram above, find two smaller triangles similar to the large one with side lengths <math>3</math>, <math>4</math>, and <math>5</math>; consequently, the segments with length <math>\frac{5}{2}</math> and <math>\frac{10}{3}</math>.
  
Let's assign <math>a</math> as the side length of box S. We then get each of the smaller triangle areas.
+
With <math>\ell</math> being the side length of the square, we need to find an expression for <math>\ell</math>. Using the hypotenuse, we can see that <math>\frac{3}{2}+\frac{8}{3}+\frac{5}{4}\ell+\frac{5}{3}\ell=5</math>. Simplifying, <math>\frac{35}{12}\ell=\frac{5}{6}</math>, or <math>\ell=\frac27</math>.
The sum of all the triangular areas(not including the box) is equal to
 
<math>\frac{(3-a) \cdot a}{2} + \frac{(4-a) \cdot a}{2} + \frac{5 \cdot 2}{2} = \frac{3 \cdot 4}{2} - a^2</math>
 
  
You can solve for <math>a=\frac{2}{7}</math>
+
A different calculation would yield <math>\ell+\frac{3}{4}\ell+\frac{5}{2}=3</math>, so <math>\frac{7}{4}\ell=\frac{1}{2}</math>. In other words, <math>\ell=\frac{2}{7}</math>, while to check, <math>\ell+\frac{4}{3}\ell+\frac{10}{3}=4</math>. As such, <math>\frac{7}{3}\ell=\frac{2}{3}</math>, and <math>\ell=\frac{2}{7}</math>.
  
Then, the ratio would be <math>1-\dfrac{{\frac{2}{7}}^2}{6}</math> which is equal to <math>\boxed{\textbf{(D) } \frac{145}{147}}</math>
+
Finally, we get <math>A(\Square S)=\ell^2=\frac{4}{49}</math>, to finish. As a proportion of the triangle with area <math>6</math>, the answer would be <math>1-\frac{4}{49\cdot6}=1-\frac{2}{147}=\frac{145}{147}</math>, so <math>\boxed{\textbf{(D) } \frac{145}{147}}</math> is correct.
  
~Starshooter11
+
==Solution 5 (Similar Triangles)==
 +
Let the side length of the square be <math>x</math>. First off, let us make a similar triangle with the segment of length <math>2</math> and the top-right corner of <math>S</math>. Therefore, the longest side of the smaller triangle must be <math>2 \cdot \frac54 = \frac52</math>. We then do operations with that side in terms of <math>x</math>. We subtract <math>x</math> from the bottom, and <math>\frac{3x}{4}</math> from the top. That gives us the equation of <math>3-\frac{7x}{4} = \frac{5}{2}</math>. Solving, <cmath>12-7x = 10 \implies x = \frac{2}{7}.</cmath>
 +
Thus, <math>x^2 = \frac{4}{49}</math>, so the fraction of the triangle (area <math>6</math>) covered by the square is <math>\frac{2}{147}</math>. The answer is then <math>\boxed{\textbf{(D) } \frac{145}{147}}</math>.
  
==Solution 8(Similar but cleaner than first solution):==
+
==Solution 6 (Coordinate Geometry)==
 +
We use coordinate geometry. Let the right angle be at <math>(0,0)</math> and the hypotenuse be the line <math>3x+4y = 12</math> for <math>0\le x\le 3</math>. Denote the position of <math>S</math> as <math>(s,s)</math>, and by the point to line distance formula, we know that
 +
<cmath>\begin{align*}
 +
\frac{|3s+4s-12|}{5} &= 2 \\
 +
|7s-12| &= 10
 +
\end{align*}</cmath>
 +
Solving this, we get <math>s=\frac{22}{7}, \frac{2}{7}</math>. Obviously <math>s<\frac{22}{7}</math>, so <math>s = \frac{2}{7}</math>, and from here, the rest of the solution follows to get <math>\boxed{\textbf{(D) } \frac{145}{147}}</math>.
  
Instead of dividing the large triangle into three right triangles plus a square, simply draw one diagonal of the square (can someone asymptote this for me I don't know how) divide the large triangle into three triangles with the sides <math>3,4,</math> and <math>5</math> as their bases. The total area is <math>6</math> as found above, and the square's side length is <math>x</math>. The area equation is:
+
==Solution 7 (Coordinate Geometry)==
<cmath>\dfrac{3x}{2}+\dfrac{4x}{2}+\dfrac{5\cdot2}{2}=6,</cmath> which solves to <math>x=\dfrac{2}{7},</math> the same as the first solution (but easier to calculate). The final answer is <math>\boxed{\dfrac{145}{147}}</math>.
+
Let the right angle be at <math>(0,0)</math>, the point <math>(x,x)</math> be the far edge of the unplanted square and the hypotenuse be the line <math>y=-\frac{3}{4}x+3</math>. Since the line from <math>(x,x)</math> to the hypotenuse is the shortest possible distance, we know this line, call it line <math>\l</math>, is perpendicular to the hypotenuse and therefore has a slope of <math>\frac{4}{3}</math>.  
 
 
==Hardness of Problem==
 
  
This problem is medium hard or on a scale of 10, a 6.5. The problem itself requires the drawing of a few obvious lines and algebra, although the image deceives the solver.
+
Since we know <math>m=\frac{4}{3}</math> , we can see that the line rises by <math>\frac{8}{5}</math> and moves to the right by <math>\frac{6}{5}</math> to meet the hypotenuse. (Let <math>2 = 5x</math> and the rise be <math>4x</math> and the run be <math>3x</math> and then solve.) Therefore, line <math>\l</math> intersects the hypotenuse at the point <math>\left(x+\frac{6}{5}, x+\frac{8}{5}\right)</math>. Plugging into the equation for the hypotenuse we have <math>x=\frac{2}{7}</math> , and after a bit of computation we get <math>\boxed{\textbf{(D) } \frac{145}{147}}</math>.
 
 
Comment: hardness is relative to the problem solver. Please don't feel pressured to spontaneously know concepts that are difficult for you.
 
  
 
== Video Solution by Richard Rusczyk ==
 
== Video Solution by Richard Rusczyk ==
Line 138: Line 160:
  
 
~ dolphin7
 
~ dolphin7
 
  
 
==See Also==
 
==See Also==

Revision as of 12:09, 20 September 2021

The following problem is from both the 2018 AMC 12A #17 and 2018 AMC 10A #23, so both problems redirect to this page.

Problem

Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths $3$ and $4$ units. In the corner where those sides meet at a right angle, he leaves a small unplanted square $S$ so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from $S$ to the hypotenuse is $2$ units. What fraction of the field is planted?

[asy] /* Edited by MRENTHUSIASM */ size(160); pair A, B, C, D, F; A = origin; B = (4,0); C = (0,3); D = (2/7,2/7); F = foot(D,B,C); fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray); draw(A--B--C--cycle); draw((2/7,0)--D--(0,2/7)); label("$4$", midpoint(A--B), N); label("$3$", midpoint(A--C), E); label("$2$", midpoint(D--F), SE); label("$S$", midpoint(A--D)); draw(D--F, dashed); [/asy]

$\textbf{(A) }   \frac{25}{27}   \qquad        \textbf{(B) }   \frac{26}{27}   \qquad    \textbf{(C) }   \frac{73}{75}   \qquad   \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }   \frac{74}{75}$

Solution 1 (Area Addition)

Note that the hypotenuse of the field is $5,$ and the area of the field is $6.$ Let $x$ be the side-length of square $S.$

We partition the field into a red triangle, a yellow triangle, and a green triangle, as shown below: [asy] /* Edited by MRENTHUSIASM */ size(180); pair A, B, C, D, F; A = origin; B = (4,0); C = (0,3); D = (2/7,2/7); F = foot(D,B,C); fill(A--D--C--cycle, red); fill(A--D--B--cycle, yellow); fill(B--D--C--cycle, green); draw(A--B--C--cycle); label("$5$", midpoint(B--C), NE); label("$4$", midpoint(A--B), S); label("$3$", midpoint(A--C), W); label("$2$", midpoint(D--F), SE); label("$S$", midpoint(A--D)); label("$x$", midpoint((0,2/7)--D), N); label("$x$", midpoint((2/7,0)--D), E); draw((2/7,0)--D--(0,2/7)); draw(A--D^^B--D^^C--D, dashed); draw(D--F, dashed); [/asy] Let the brackets denote areas. By area addition, we set up an equation for $x:$ \begin{align*} [\text{Red Triangle}]+[\text{Yellow Triangle}]+[\text{Green Triangle}]&=[\text{Field}] \\ \frac{3x}{2}+\frac{4x}{2}+\frac{5\cdot2}{2}&=6, \end{align*} from which $x=\frac27.$ Therefore, the answer is \[\frac{[\text{Field}]-[S]}{[\text{Field}]}=\frac{6-x^2}{6}=\boxed{\textbf{(D) } \frac{145}{147}}.\] ~MRENTHUSIASM

Solution 2 (Area Addition)

Let the square have side length $x$. Connect the upper-right vertex of square $S$ with the two vertices of the triangle's hypotenuse. This divides the triangle in several regions whose areas must add up to the area of the whole triangle, which is $6$. [asy] /* Edited by MRENTHUSIASM */ size(180); pair A, B, C, D, F; A = origin; B = (4,0); C = (0,3); D = (2/7,2/7); F = foot(D,B,C); fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray); draw(A--B--C--cycle); label("$5$", midpoint(B--C), NE); label("$4$", midpoint(A--B), S); label("$3$", midpoint(A--C), W); label("$2$", midpoint(D--F), SE); label("$S$", midpoint(A--D)); label("$x$", midpoint((0,2/7)--D), N); label("$x$", midpoint((2/7,0)--D), E); draw((2/7,0)--D--(0,2/7)); draw(B--D^^C--D, dashed); draw(D--F, dashed); [/asy] Square $S$ has area $x^2$, and the two thin triangle regions have area $\dfrac{x(3-x)}{2}$ and $\dfrac{x(4-x)}{2}$. The final triangular region with the hypotenuse as its base and height $2$ has area $5$. Thus, we have \[x^2+\dfrac{x(3-x)}{2}+\dfrac{x(4-x)}{2}+5=6.\] Solving gives $x=\dfrac{2}{7}$. The area of $S$ is $\dfrac{4}{49}$ and the desired ratio is $\dfrac{6-\tfrac{4}{49}}{6}=\boxed{\textbf{(D) } \frac{145}{147}}$.

Alternatively, once you get $x=\frac{2}{7}$, you can avoid computation by noticing that there is a denominator of $7$, so the answer must have a factor of $7$ in the denominator, which only $\frac{145}{147}$ does.

Solution 3 (Similar Triangles)

Let the square have side length $s$. If we were to extend the sides of the square further into the triangle until they intersect on point on the hypotenuse, we'd have a similar right triangle formed between the hypotenuse and the two new lines, and two smaller similar triangles that share a side of length $2$. Using the side-to-side ratios of these triangles, we can find that the length of the larger similar triangle is $\frac{5}{3}(2)=\frac{10}{3}$. Now, let's extend this larger similar right triangle to the left until it hits the side of length $3$. Now, the length is $\frac{10}{3}+s$, and using the ratios of the side lengths, the height is $\frac{3}{4}\left(\frac{10}{3}+s\right)=\frac{5}{2}+\frac{3s}{4}$. Looking at the diagram, if we add the height of this triangle to the side length of the square, we'd get $3$, so \begin{align*} \frac{5}{2}+\frac{3s}{4}+s&=3 \\  \frac{5}{2}+\frac{7s}{4}&=3 \\ \frac{7s}{4}&=\frac{1}{2} \\ s&=\frac{2}{7}. \end{align*} So, the area of the square is $\left(\frac{2}{7}\right)^2=\frac{4}{49}$.

Now comes the easy part--finding the ratio of the areas: $\frac{3\cdot 4 \cdot \frac{1}{2} -\frac{4}{49}}{3\cdot 4 \cdot \frac{1}{2}}=\frac{6-\frac{4}{49}}{6}=\frac{294-4}{294}=\frac{290}{294}=\boxed{\textbf{(D) } \frac{145}{147}}$.

Solution 4 (Similar Triangles)

[asy] /* Edited by MRENTHUSIASM */ size(180); pair A, B, C, D, F; A = origin; B = (4,0); C = (0,3); D = (2/7,2/7); F = foot(D,B,C); fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray); draw(A--B--C--cycle); label("$4$", midpoint(A--B), S); label("$3$", midpoint(A--C), W); label("$2$", midpoint(D--F), SE); label("$S$", midpoint(A--D)); label("$\ell$", midpoint((0,2/7)--D), N); label("$\ell$", midpoint((2/7,0)--D), E); label("$\ell$", midpoint((2/7,2/7+5/2)--(0,2/7+5/2)), S); label("$\ell$", midpoint((2/7+10/3,2/7)--(2/7+10/3,0)), W); label("$\frac{5}{2}$", midpoint((2/7,2/7+5/2)--D), E); label("$\frac{10}{3}$", midpoint((2/7+10/3,2/7)--D), N); draw((2/7,0)--D--(0,2/7)); draw((2/7,2/7+5/2)--D^^(2/7+10/3,2/7)--D, dashed); draw((2/7,2/7+5/2)--(0,2/7+5/2)^^(2/7+10/3,2/7)--(2/7+10/3,0), dashed); draw(D--F, dashed); [/asy] On the diagram above, find two smaller triangles similar to the large one with side lengths $3$, $4$, and $5$; consequently, the segments with length $\frac{5}{2}$ and $\frac{10}{3}$.

With $\ell$ being the side length of the square, we need to find an expression for $\ell$. Using the hypotenuse, we can see that $\frac{3}{2}+\frac{8}{3}+\frac{5}{4}\ell+\frac{5}{3}\ell=5$. Simplifying, $\frac{35}{12}\ell=\frac{5}{6}$, or $\ell=\frac27$.

A different calculation would yield $\ell+\frac{3}{4}\ell+\frac{5}{2}=3$, so $\frac{7}{4}\ell=\frac{1}{2}$. In other words, $\ell=\frac{2}{7}$, while to check, $\ell+\frac{4}{3}\ell+\frac{10}{3}=4$. As such, $\frac{7}{3}\ell=\frac{2}{3}$, and $\ell=\frac{2}{7}$.

Finally, we get $A(\Square S)=\ell^2=\frac{4}{49}$, to finish. As a proportion of the triangle with area $6$, the answer would be $1-\frac{4}{49\cdot6}=1-\frac{2}{147}=\frac{145}{147}$, so $\boxed{\textbf{(D) } \frac{145}{147}}$ is correct.

Solution 5 (Similar Triangles)

Let the side length of the square be $x$. First off, let us make a similar triangle with the segment of length $2$ and the top-right corner of $S$. Therefore, the longest side of the smaller triangle must be $2 \cdot \frac54 = \frac52$. We then do operations with that side in terms of $x$. We subtract $x$ from the bottom, and $\frac{3x}{4}$ from the top. That gives us the equation of $3-\frac{7x}{4} = \frac{5}{2}$. Solving, \[12-7x = 10 \implies x = \frac{2}{7}.\] Thus, $x^2 = \frac{4}{49}$, so the fraction of the triangle (area $6$) covered by the square is $\frac{2}{147}$. The answer is then $\boxed{\textbf{(D) } \frac{145}{147}}$.

Solution 6 (Coordinate Geometry)

We use coordinate geometry. Let the right angle be at $(0,0)$ and the hypotenuse be the line $3x+4y = 12$ for $0\le x\le 3$. Denote the position of $S$ as $(s,s)$, and by the point to line distance formula, we know that \begin{align*} \frac{|3s+4s-12|}{5} &= 2 \\ |7s-12| &= 10 \end{align*} Solving this, we get $s=\frac{22}{7}, \frac{2}{7}$. Obviously $s<\frac{22}{7}$, so $s = \frac{2}{7}$, and from here, the rest of the solution follows to get $\boxed{\textbf{(D) } \frac{145}{147}}$.

Solution 7 (Coordinate Geometry)

Let the right angle be at $(0,0)$, the point $(x,x)$ be the far edge of the unplanted square and the hypotenuse be the line $y=-\frac{3}{4}x+3$. Since the line from $(x,x)$ to the hypotenuse is the shortest possible distance, we know this line, call it line $\l$, is perpendicular to the hypotenuse and therefore has a slope of $\frac{4}{3}$.

Since we know $m=\frac{4}{3}$ , we can see that the line rises by $\frac{8}{5}$ and moves to the right by $\frac{6}{5}$ to meet the hypotenuse. (Let $2 = 5x$ and the rise be $4x$ and the run be $3x$ and then solve.) Therefore, line $\l$ intersects the hypotenuse at the point $\left(x+\frac{6}{5}, x+\frac{8}{5}\right)$. Plugging into the equation for the hypotenuse we have $x=\frac{2}{7}$ , and after a bit of computation we get $\boxed{\textbf{(D) } \frac{145}{147}}$.

Video Solution by Richard Rusczyk

https://www.youtube.com/watch?v=p9npzq4FY_Y

~ dolphin7

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png