Join our free webinar April 22 to learn about competitive programming!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
basically INAMO 2010/6
iStud   0
39 minutes ago
Source: Monthly Contest KTOM April P1 Essay
Call $n$ kawaii if it satisfies $d(n)+\varphi(n)+1=n$ ($d(n)$ is the number of positive factors of $n$, while $\varphi(n)$ is the number of integers not more than $n$ that are relatively prime with $n$). Find all $n$ that is kawaii.
0 replies
iStud
39 minutes ago
0 replies
trolling geometry problem
iStud   0
43 minutes ago
Source: Monthly Contest KTOM April P3 Essay
Given a cyclic quadrilateral $ABCD$ with $BC<AD$ and $CD<AB$. Lines $BC$ and $AD$ intersect at $X$, and lines $CD$ and $AB$ intersect at $Y$. Let $E,F,G,H$ be the midpoints of sides $AB,BC,CD,DA$, respectively. Let $S$ and $T$ be points on segment $EG$ and $FH$, respectively, so that $XS$ is the angle bisector of $\angle{DXA}$ and $YT$ is the angle bisector of $\angle{DYA}$. Prove that $TS$ is parallel to $BD$ if and only if $AC$ divides $ABCD$ into two triangles with equal area.
0 replies
iStud
43 minutes ago
0 replies
My hardest algebra ever created (only one solve in the contest)
mshtand1   6
N an hour ago by mshtand1
Source: Ukraine IMO TST P9
Find all functions \( f: (0, +\infty) \to (0, +\infty) \) for which, for all \( x, y > 0 \), the following identity holds:
\[
f(x) f(yf(x)) + y f(xy) = \frac{f\left(\frac{x}{y}\right)}{y} + \frac{f\left(\frac{y}{x}\right)}{x}
\]
Proposed by Mykhailo Shtandenko
6 replies
mshtand1
Apr 19, 2025
mshtand1
an hour ago
Killer NT that nobody solved (also my hardest NT ever created)
mshtand1   4
N 2 hours ago by mshtand1
Source: Ukraine IMO 2025 TST P8
A positive integer number \( a \) is chosen. Prove that there exists a prime number that divides infinitely many terms of the sequence \( \{b_k\}_{k=1}^{\infty} \), where
\[
b_k = a^{k^k} \cdot 2^{2^k - k} + 1.
\]
Proposed by Arsenii Nikolaev and Mykhailo Shtandenko
4 replies
mshtand1
Apr 19, 2025
mshtand1
2 hours ago
Advanced topics in Inequalities
va2010   22
N 2 hours ago by Primeniyazidayi
So a while ago, I compiled some tricks on inequalities. You are welcome to post solutions below!
22 replies
va2010
Mar 7, 2015
Primeniyazidayi
2 hours ago
Funny easy transcendental geo
qwerty123456asdfgzxcvb   0
3 hours ago
Let $\mathcal{S}$ be a logarithmic spiral centered at the origin (ie curve satisfying for any point $X$ on it, line $OX$ makes a fixed angle with the tangent to $\mathcal{S}$ at $X$). Let $\mathcal{H}$ be a rectangular hyperbola centered at the origin, scaled such that it is tangent to the logarithmic spiral at some point.

Prove that for a point $P$ on the spiral, the polar of $P$ wrt. $\mathcal{H}$ is tangent to the spiral.
0 replies
qwerty123456asdfgzxcvb
3 hours ago
0 replies
Nice problem about a trapezoid
manlio   1
N 3 hours ago by kiyoras_2001
Have you a nice solution for this problem?
Thank you very much
1 reply
manlio
Apr 19, 2025
kiyoras_2001
3 hours ago
product of the first n terms
FireBreathers   5
N 3 hours ago by ihategeo_1969
Does there exist an infinite sequence of positive integers $a_i$ such that every positive integer appears exactly once and the product of the first $n$ terms is a perfect $n - th$ power ?
5 replies
FireBreathers
Dec 16, 2024
ihategeo_1969
3 hours ago
Inequality with three conditions
oVlad   1
N 3 hours ago by Haris1
Source: Romania EGMO TST 2019 Day 1 P3
Let $a,b,c$ be non-negative real numbers such that \[b+c\leqslant a+1,\quad c+a\leqslant b+1,\quad a+b\leqslant c+1.\]Prove that $a^2+b^2+c^2\leqslant 2abc+1.$
1 reply
oVlad
Today at 1:48 PM
Haris1
3 hours ago
Paint and Optimize: A Grid Strategy Problem
mojyla222   2
N 3 hours ago by sami1618
Source: Iran 2025 second round p2
Ali and Shayan are playing a turn-based game on an infinite grid. Initially, all cells are white. Ali starts the game, and in the first turn, he colors one unit square black. In the following turns, each player must color a white square that shares at least one side with a black square. The game continues for exactly 2808 turns, after which each player has made 1404 moves. Let $A$ be the set of black cells at the end of the game. Ali and Shayan respectively aim to minimize and maximise the perimeter of the shape $A$ by playing optimally. (The perimeter of shape $A$ is defined as the total length of the boundary segments between a black and a white cell.)

What are the possible values of the perimeter of $A$, assuming both players play optimally?
2 replies
mojyla222
Yesterday at 4:25 AM
sami1618
3 hours ago
a