Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
Fractional Inequality
sqing   33
N an hour ago by Learning11
Source: Chinese Girls Mathematical Olympiad 2012, Problem 1
Let $ a_1, a_2,\ldots, a_n$ be non-negative real numbers. Prove that
$\frac{1}{1+ a_1}+\frac{ a_1}{(1+ a_1)(1+ a_2)}+\frac{ a_1 a_2}{(1+ a_1)(1+ a_2)(1+ a_3)}+$ $\cdots+\frac{ a_1 a_2\cdots a_{n-1}}{(1+ a_1)(1+ a_2)\cdots (1+ a_n)} \le 1.$
33 replies
sqing
Aug 10, 2012
Learning11
an hour ago
Geometry angle chasing olympiads
Foxellar   1
N an hour ago by Ianis
Let \( \triangle ABC \) be a triangle such that \( \angle ABC = 120^\circ \). Points \( X, Y, Z \) lie on segments \( BC, CA, AB \), respectively, such that lines \( AX, BY, \) and \( CZ \) are the angle bisectors of triangle \( ABC \). Find the measure of angle \( \angle XYZ \).
1 reply
Foxellar
an hour ago
Ianis
an hour ago
Iran Inequality
mathmatecS   17
N an hour ago by Learning11
Source: Iran 1998
When $x(\ge1),$ $y(\ge1),$ $z(\ge1)$ satisfy $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2,$ prove in equality.
$$\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}$$
17 replies
mathmatecS
Jun 11, 2015
Learning11
an hour ago
Problem 4
codyj   87
N 2 hours ago by ezpotd
Source: IMO 2015 #4
Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$.

Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$.

Proposed by Greece
87 replies
codyj
Jul 11, 2015
ezpotd
2 hours ago
IMO96/2 [the lines AP, BD, CE meet at a point]
Arne   47
N 3 hours ago by Bridgeon
Source: IMO 1996 problem 2, IMO Shortlist 1996, G2
Let $ P$ be a point inside a triangle $ ABC$ such that
\[ \angle APB - \angle ACB = \angle APC - \angle ABC.
\]
Let $ D$, $ E$ be the incenters of triangles $ APB$, $ APC$, respectively. Show that the lines $ AP$, $ BD$, $ CE$ meet at a point.
47 replies
Arne
Sep 30, 2003
Bridgeon
3 hours ago
A sharp one with 3 var (3)
mihaig   4
N 3 hours ago by aaravdodhia
Source: Own
Let $a,b,c\geq0$ satisfying
$$\left(a+b+c-2\right)^2+8\leq3\left(ab+bc+ca\right).$$Prove
$$a^2+b^2+c^2+5abc\geq8.$$
4 replies
mihaig
Yesterday at 5:17 PM
aaravdodhia
3 hours ago
Cup of Combinatorics
M11100111001Y1R   1
N 4 hours ago by Davdav1232
Source: Iran TST 2025 Test 4 Problem 2
There are \( n \) cups labeled \( 1, 2, \dots, n \), where the \( i \)-th cup has capacity \( i \) liters. In total, there are \( n \) liters of water distributed among these cups such that each cup contains an integer amount of water. In each step, we may transfer water from one cup to another. The process continues until either the source cup becomes empty or the destination cup becomes full.

$a)$ Prove that from any configuration where each cup contains an integer amount of water, it is possible to reach a configuration in which each cup contains exactly 1 liter of water in at most \( \frac{4n}{3} \) steps.

$b)$ Prove that in at most \( \frac{5n}{3} \) steps, one can go from any configuration with integer water amounts to any other configuration with the same property.
1 reply
M11100111001Y1R
Yesterday at 7:24 AM
Davdav1232
4 hours ago
Bulgaria National Olympiad 1996
Jjesus   7
N 4 hours ago by reni_wee
Find all prime numbers $p,q$ for which $pq$ divides $(5^p-2^p)(5^q-2^q)$.
7 replies
Jjesus
Jun 10, 2020
reni_wee
4 hours ago
Can't be power of 2
shobber   31
N 4 hours ago by LeYohan
Source: APMO 1998
Show that for any positive integers $a$ and $b$, $(36a+b)(a+36b)$ cannot be a power of $2$.
31 replies
shobber
Mar 17, 2006
LeYohan
4 hours ago
Brilliant Problem
M11100111001Y1R   4
N 4 hours ago by IAmTheHazard
Source: Iran TST 2025 Test 3 Problem 3
Find all sequences \( (a_n) \) of natural numbers such that for every pair of natural numbers \( r \) and \( s \), the following inequality holds:
\[
\frac{1}{2} < \frac{\gcd(a_r, a_s)}{\gcd(r, s)} < 2
\]
4 replies
M11100111001Y1R
Yesterday at 7:28 AM
IAmTheHazard
4 hours ago
a