Stay ahead of learning milestones! Enroll in a class over the summer!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
A Projection Theorem
buratinogigle   2
N an hour ago by wh0nix
Source: VN Math Olympiad For High School Students P1 - 2025
In triangle $ABC$, prove that
\[ a = b\cos C + c\cos B. \]
2 replies
buratinogigle
4 hours ago
wh0nix
an hour ago
Turbo's en route to visit each cell of the board
Lukaluce   18
N an hour ago by yyhloveu1314
Source: EGMO 2025 P5
Let $n > 1$ be an integer. In a configuration of an $n \times n$ board, each of the $n^2$ cells contains an arrow, either pointing up, down, left, or right. Given a starting configuration, Turbo the snail starts in one of the cells of the board and travels from cell to cell. In each move, Turbo moves one square unit in the direction indicated by the arrow in her cell (possibly leaving the board). After each move, the arrows in all of the cells rotate $90^{\circ}$ counterclockwise. We call a cell good if, starting from that cell, Turbo visits each cell of the board exactly once, without leaving the board, and returns to her initial cell at the end. Determine, in terms of $n$, the maximum number of good cells over all possible starting configurations.

Proposed by Melek Güngör, Turkey
18 replies
Lukaluce
Monday at 11:01 AM
yyhloveu1314
an hour ago
Perhaps a classic with parameter
mihaig   1
N 2 hours ago by LLriyue
Find the largest positive constant $r$ such that
$$a^2+b^2+c^2+d^2+2\left(abcd\right)^r\geq6$$for all reals $a\geq1\geq b\geq c\geq d\geq0$ satisfying $a+b+c+d=4.$
1 reply
mihaig
Jan 7, 2025
LLriyue
2 hours ago
Connected graph with k edges
orl   26
N 2 hours ago by Maximilian113
Source: IMO 1991, Day 2, Problem 4, IMO ShortList 1991, Problem 10 (USA 5)
Suppose $ \,G\,$ is a connected graph with $ \,k\,$ edges. Prove that it is possible to label the edges $ 1,2,\ldots ,k\,$ in such a way that at each vertex which belongs to two or more edges, the greatest common divisor of the integers labeling those edges is equal to 1.

Note: Graph-Definition. A graph consists of a set of points, called vertices, together with a set of edges joining certain pairs of distinct vertices. Each pair of vertices $ \,u,v\,$ belongs to at most one edge. The graph $ G$ is connected if for each pair of distinct vertices $ \,x,y\,$ there is some sequence of vertices $ \,x = v_{0},v_{1},v_{2},\cdots ,v_{m} = y\,$ such that each pair $ \,v_{i},v_{i + 1}\;(0\leq i < m)\,$ is joined by an edge of $ \,G$.
26 replies
orl
Nov 11, 2005
Maximilian113
2 hours ago
3 var inquality
sqing   2
N 2 hours ago by sqing
Source: Own
Let $ a,b,c> 0 $ and $  4(a+b) +3c-ab  \geq10$ . Prove that
$$a^2+b^2+c^2+kabc\geq k+3$$Where $0\leq k \leq 1. $
$$a^2+b^2+c^2+abc\geq 4$$
2 replies
sqing
3 hours ago
sqing
2 hours ago
Pls solve this FE
ItzsleepyXD   2
N 2 hours ago by ItzsleepyXD
Source: My friend
Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation\[f(x^2f(x+y))=f(xyf(x))+xf(x)^2\]for all real numbers $x$ and $y$.
2 replies
ItzsleepyXD
Nov 26, 2023
ItzsleepyXD
2 hours ago
The old one is gone.
EeEeRUT   3
N 3 hours ago by ItzsleepyXD
Source: EGMO 2025 P2
An infinite increasing sequence $a_1 < a_2 < a_3 < \cdots$ of positive integers is called central if for every positive integer $n$ , the arithmetic mean of the first $a_n$ terms of the sequence is equal to $a_n$.

Show that there exists an infinite sequence $b_1, b_2, b_3, \dots$ of positive integers such that for every central sequence $a_1, a_2, a_3, \dots, $ there are infinitely many positive integers $n$ with $a_n = b_n$.
3 replies
EeEeRUT
4 hours ago
ItzsleepyXD
3 hours ago
Interesting inequalities
sqing   4
N 3 hours ago by sqing
Source: Own
Let $   a,b    $ be reals such that $  a^2+ab+b^2 =1$ . Prove that
$$  \frac{8}{ 5 }> \frac{1}{ a^2+1 }+ \frac{1}{ b^2+1 } \geq 1$$$$   \frac{9}{ 5 }\geq\frac{1}{ a^4+1 }+ \frac{1}{ b^4+1 } \geq 1$$$$  \frac{27}{ 14 }\geq \frac{1}{ a^6+1 }+ \frac{1}{ b^6+1 } \geq  1$$Let $   a,b    $ be reals such that $  a^2+ab+b^2 =3$ . Prove that
$$  \frac{13}{ 10 }> \frac{1}{ a^2+1 }+ \frac{1}{ b^2+1 } \geq \frac{1}{ 2 }$$$$   \frac{6}{ 5 }>\frac{1}{ a^4+1 }+ \frac{1}{ b^4+1 } \geq   \frac{1}{ 5 }$$$$  \frac{1}{ a^6+1 }+ \frac{1}{ b^6+1 } \geq   \frac{1}{ 14 }$$
4 replies
sqing
Yesterday at 8:32 AM
sqing
3 hours ago
Ant wanna come to A
Rohit-2006   3
N 3 hours ago by Rohit-2006
An insect starts from $A$ and in $10$ steps and has to reach $A$ again. But in between one of the s steps and can't go $A$. Find probability. For example $ABCDCDEDEA$ is valid but $ABABCDEABA$ is not valid.

*Too many edits, my brain had gone to a trip
3 replies
Rohit-2006
Yesterday at 6:47 PM
Rohit-2006
3 hours ago
BMO Shortlist 2021 A5
Lukaluce   16
N 3 hours ago by Sedro
Source: BMO Shortlist 2021
Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that
$$f(xf(x + y)) = yf(x) + 1$$holds for all $x, y \in \mathbb{R}^{+}$.

Proposed by Nikola Velov, North Macedonia
16 replies
Lukaluce
May 8, 2022
Sedro
3 hours ago
a