Join our free webinar April 22 to learn about competitive programming!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
real+ FE
pomodor_ap   4
N 37 minutes ago by jasperE3
Source: Own, PDC001-P7
Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be a function such that
$$f(x)f(x^2 + y f(y)) = f(x)f(y^2) + x^3$$for all $x, y \in \mathbb{R}^+$. Determine all such functions $f$.
4 replies
pomodor_ap
Yesterday at 11:24 AM
jasperE3
37 minutes ago
FE solution too simple?
Yiyj1   8
N 44 minutes ago by lksb
Source: 101 Algebra Problems from the AMSP
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality $$f(f(x)+y) = f(x^2-y)+4f(x)y$$holds for all pairs of real numbers $(x,y)$.

My solution

I feel like my solution is too simple. Is there something I did wrong or something I missed?
8 replies
Yiyj1
Apr 9, 2025
lksb
44 minutes ago
Polynomials in Z[x]
BartSimpsons   16
N an hour ago by bin_sherlo
Source: European Mathematical Cup 2017 Problem 4
Find all polynomials $P$ with integer coefficients such that $P (0)\ne  0$ and $$P^n(m)\cdot P^m(n)$$is a square of an integer for all nonnegative integers $n, m$.

Remark: For a nonnegative integer $k$ and an integer $n$, $P^k(n)$ is defined as follows: $P^k(n) = n$ if $k = 0$ and $P^k(n)=P(P(^{k-1}(n))$ if $k >0$.

Proposed by Adrian Beker.
16 replies
BartSimpsons
Dec 27, 2017
bin_sherlo
an hour ago
Why is the old one deleted?
EeEeRUT   13
N an hour ago by EVKV
Source: EGMO 2025 P1
For a positive integer $N$, let $c_1 < c_2 < \cdots < c_m$ be all positive integers smaller than $N$ that are coprime to $N$. Find all $N \geqslant 3$ such that $$\gcd( N, c_i + c_{i+1}) \neq 1$$for all $1 \leqslant i \leqslant m-1$

Here $\gcd(a, b)$ is the largest positive integer that divides both $a$ and $b$. Integers $a$ and $b$ are coprime if $\gcd(a, b) = 1$.

Proposed by Paulius Aleknavičius, Lithuania
13 replies
EeEeRUT
Apr 16, 2025
EVKV
an hour ago
Factor sums of integers
Aopamy   2
N 2 hours ago by cadaeibf
Let $n$ be a positive integer. A positive integer $k$ is called a benefactor of $n$ if the positive divisors of $k$ can be partitioned into two sets $A$ and $B$ such that $n$ is equal to the sum of elements in $A$ minus the sum of the elements in $B$. Note that $A$ or $B$ could be empty, and that the sum of the elements of the empty set is $0$.

For example, $15$ is a benefactor of $18$ because $1+5+15-3=18$.

Show that every positive integer $n$ has at least $2023$ benefactors.
2 replies
Aopamy
Feb 23, 2023
cadaeibf
2 hours ago
Least integer T_m such that m divides gauss sum
Al3jandro0000   33
N 2 hours ago by NerdyNashville
Source: 2020 Iberoamerican P2
Let $T_n$ denotes the least natural such that
$$n\mid 1+2+3+\cdots +T_n=\sum_{i=1}^{T_n} i$$Find all naturals $m$ such that $m\ge T_m$.

Proposed by Nicolás De la Hoz
33 replies
Al3jandro0000
Nov 17, 2020
NerdyNashville
2 hours ago
Estonian Math Competitions 2005/2006
STARS   2
N 2 hours ago by jasperE3
Source: Juniors Problem 4
A $ 9 \times 9$ square is divided into unit squares. Is it possible to fill each unit square with a number $ 1, 2,..., 9$ in such a way that, whenever one places the tile so that it fully covers nine unit squares, the tile will cover nine different numbers?
2 replies
STARS
Jul 30, 2008
jasperE3
2 hours ago
Sum of whose elements is divisible by p
nntrkien   43
N 2 hours ago by lpieleanu
Source: IMO 1995, Problem 6, Day 2, IMO Shortlist 1995, N6
Let $ p$ be an odd prime number. How many $ p$-element subsets $ A$ of $ \{1,2,\dots,2p\}$ are there, the sum of whose elements is divisible by $ p$?
43 replies
nntrkien
Aug 8, 2004
lpieleanu
2 hours ago
Arrangement of integers in a row with gcd
egxa   2
N 2 hours ago by Qing-Cloud
Source: All Russian 2025 10.5 and 11.5
Let \( n \) be a natural number. The numbers \( 1, 2, \ldots, n \) are written in a row in some order. For each pair of adjacent numbers, their greatest common divisor (GCD) is calculated and written on a sheet. What is the maximum possible number of distinct values among the \( n - 1 \) GCDs obtained?
2 replies
egxa
Apr 18, 2025
Qing-Cloud
2 hours ago
Integer representation
RL_parkgong_0106   1
N 2 hours ago by Jackson0423
Source: Own
Show that for any positive integer $n$, there exists some positive integer $k$ that makes the following equation have no integer root $(x_1, x_2, x_3, \dots, x_n)$.

$$x_1^{2^1}+x_2^{2^2}+x_3^{2^3}+\dots+x_n^{2^n}=k$$
1 reply
RL_parkgong_0106
4 hours ago
Jackson0423
2 hours ago
k I need help to reset progress in a certain subject but not all subjects
dwead   6
N Apr 20, 2025 by mdk2013
is there a way to reset progress in a certain subject but only that subject so like reset progress in algebra but not in prealgeba?
6 replies
dwead
Apr 19, 2025
mdk2013
Apr 20, 2025
a