Site Support
Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3
M
G
BBookmark
VNew Topic
kLocked
Site Support
Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3
M
G
BBookmark
VNew Topic
kLocked
No tags match your search
MGreed Control
Alcumus
blogs
LaTeX
search
FTW
geometry
Support
email
MATHCOUNTS
function
AMC
AoPSwiki
Bug
Reaper
Forums
AIME
suggestion
poll
site support
AMC 10
AoPS
Asymptote
AoPS classes
videos
posts
Glitch
pms
calculus
Suggestions
help
probability
classroom
number theory
classes
AMC 8
AoPS Books
question
Forum
glitch or bug
3D geometry
Greed Control
AIME I
USA(J)MO
Tags
Friends
Homework
Avatars
BBCode
upvotes
Post
No tags match your search
MG
Topic
First Poster
Last Poster
Shortest number theory you might've seen in your life
AlperenINAN 2
N
a few seconds ago
by zuat.e
Source: Turkey JBMO TST 2025 P4
Let
and
be prime numbers. Prove that if
is a perfect square, then
is also a perfect square.




2 replies


Writing quadratic trinomials inside cells
Sadigly 0
16 minutes ago
Source: Azerbaijan Junior NMO 2019
A
square is given, and a quadratic trinomial with a positive leading coefficient is placed in each of its cells. There are
coefficents in total, and these coefficents are chosen from the set
, and each coefficient is different from each other. Prove that there exists at least one column such that the sum of the six trinomials in that column has a real root.


![$[-66;47]$](http://latex.artofproblemsolving.com/d/d/9/dd92777f4ba30299d3326b285f1f73656aba544b.png)
0 replies
Product of consecutive terms divisible by a prime number
BR1F1SZ 1
N
17 minutes ago
by IndoMathXdZ
Source: 2025 Francophone MO Seniors P4
Determine all sequences of strictly positive integers
satisfying the following two conditions:
[list]
[*]There exists an integer
such that, for all indices
,
.
[*]For any prime number
and for any index
, the number
is a multiple of
.
[/list]

[list]
[*]There exists an integer



[*]For any prime number


![\[
a_n a_{n+1} \cdots a_{n+p-1} - a_{n+p}
\]](http://latex.artofproblemsolving.com/5/4/a/54ac17063104439114f3c7b07de8fd27450ea1eb.png)

[/list]
1 reply
1 viewing
Minimum value of a 3 variable expression
bin_sherlo 3
N
21 minutes ago
by ehuseyinyigit
Source: Türkiye 2025 JBMO TST P6
Find the minimum value of
where
are reals.
![\[\frac{x^3+1}{(y-1)(z+1)}+\frac{y^3+1}{(z-1)(x+1)}+\frac{z^3+1}{(x-1)(y+1)}\]](http://latex.artofproblemsolving.com/5/c/6/5c6894b617b990ec69c62ed1cf7d062d4660af53.png)

3 replies
Incenter is the foot of altitude
Sadigly 0
40 minutes ago
Source: Azerbaijan JBMO TST 2023
Let
be a triangle and let
denote the circumcircle of
. The foot of altitude from
to
is
. The foot of altitudes from
to
and
are
, respectively. Let
intersect
at
, and let
intersect
at
. Prove that
is the incenter of triangle


















0 replies
System of equations in juniors' exam
AlperenINAN 1
N
42 minutes ago
by AlperenINAN
Source: Turkey JBMO TST 2025 P3
Find all positive real solutions
to the following system:


1 reply
reals associated with 1024 points
bin_sherlo 0
an hour ago
Source: Türkiye 2025 JBMO TST P8
Pairwise distinct points
, which lie on a circle, are marked by distinct reals
. Let
be
good for a
on the circle different than
, if and only if
is the greatest number on at least one of the two arcs
. Let the score of
be the number of
good points on the circle. Determine the greatest
such that regardless of the values of
, there exists a point
with score at least
.














0 replies
n + k are composites for all nice numbers n, when n+1, 8n+1 both squares
parmenides51 3
N
an hour ago
by Nuran2010
Source: 2022 Saudi Arabia JBMO TST 1.1
The positive
called ‘nice’ if and only if
and
are both perfect squares. How many positive integers
such that
are composites for all nice numbers
?






3 replies
Divisibility NT
reni_wee 2
N
an hour ago
by reni_wee
Source: Iran 1998
Suppose that
and
are natural numbers such that
is a prime number. Find all possible values of
,
,
.






2 replies
Aslı tries to make the amount of stones at every unit square is equal
AlperenINAN 0
an hour ago
Source: Turkey JBMO TST 2025 P2
Let
be a positive integer. Aslı and Zehra are playing a game on an
grid. Initially,
stones are placed on some of the unit squares of this grid.
On each move (starting with Aslı), Aslı chooses a row or a column that contains at least two squares with different numbers of stones, and Zehra redistributes the stones in that row or column so that after redistribution, the difference in the number of stones between any two squares in that row or column is at most one. Furthermore, this move must change the number of stones in at least one square.
For which values of
, regardless of the initial placement of the stones, can Aslı guarantee that every square ends up with the same number of stones?



On each move (starting with Aslı), Aslı chooses a row or a column that contains at least two squares with different numbers of stones, and Zehra redistributes the stones in that row or column so that after redistribution, the difference in the number of stones between any two squares in that row or column is at most one. Furthermore, this move must change the number of stones in at least one square.
For which values of

0 replies
