Stay ahead of learning milestones! Enroll in a class over the summer!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
Tiling rectangle with smaller rectangles.
MarkBcc168   59
N 2 hours ago by Bonime
Source: IMO Shortlist 2017 C1
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.

Proposed by Jeck Lim, Singapore
59 replies
MarkBcc168
Jul 10, 2018
Bonime
2 hours ago
Existence of AP of interesting integers
DVDthe1st   34
N 2 hours ago by DeathIsAwe
Source: 2018 China TST Day 1 Q2
A number $n$ is interesting if 2018 divides $d(n)$ (the number of positive divisors of $n$). Determine all positive integers $k$ such that there exists an infinite arithmetic progression with common difference $k$ whose terms are all interesting.
34 replies
DVDthe1st
Jan 2, 2018
DeathIsAwe
2 hours ago
Strange Geometry
Itoz   1
N 3 hours ago by hukilau17
Source: Own
Given a fixed circle $\omega$ with its center $O$. There are two fixed points $B, C$ and one moving point $A$ on $\omega$. The midpoint of the line segment $BC$ is $M$. $R$ is a fixed point on $\omega$. Line $AO$ intersects$\odot(AMR)$ at $P(\ne A)$, and line $BP$ intersects $\odot(BOC)$ at $Q(\ne B)$.

Find all the fixed points $R$ such that $\omega$ is always tangent to $\odot (OPQ)$ when $A$ varies.
Hint
1 reply
Itoz
Yesterday at 2:00 PM
hukilau17
3 hours ago
find all pairs of positive integers
Khalifakhalifa   2
N 4 hours ago by Haris1


Find all pairs of positive integers \((a, b)\) such that:
\[
a^2 + b^2 \mid a^3 + b^3
\]
2 replies
1 viewing
Khalifakhalifa
May 27, 2024
Haris1
4 hours ago
D860 : Flower domino and unconnected
Dattier   4
N 4 hours ago by Haris1
Source: les dattes à Dattier
Let G be a grid of size m*n.

We have 2 dominoes in flowers and not connected like here
IMAGE
Determine a necessary and sufficient condition on m and n, so that G can be covered with these 2 kinds of dominoes.

4 replies
Dattier
May 26, 2024
Haris1
4 hours ago
Equal Distances in an Isosceles Setting
mojyla222   3
N 4 hours ago by sami1618
Source: IDMC 2025 P4
Let $ABC$ be an isosceles triangle with $AB=AC$. The circle $\omega_1$, passing through $B$ and $C$, intersects segment $AB$ at $K\neq B$. The circle $\omega_2$ is tangent to $BC$ at $B$ and passes through $K$. Let $M$ and $N$ be the midpoints of segments $AB$ and $AC$, respectively. The line $MN$ intersects $\omega_1$ and $\omega_2$ at points $P$ and $Q$, respectively, where $P$ and $Q$ are the intersections closer to $M$. Prove that $MP=MQ$.

Proposed by Hooman Fattahi
3 replies
mojyla222
Yesterday at 5:05 AM
sami1618
4 hours ago
standard Q FE
jasperE3   1
N 4 hours ago by ErTeeEs06
Source: gghx, p19004309
Find all functions $f:\mathbb Q\to\mathbb Q$ such that for any $x,y\in\mathbb Q$:
$$f(xf(x)+f(x+2y))=f(x)^2+f(y)+y.$$
1 reply
jasperE3
Yesterday at 6:27 PM
ErTeeEs06
4 hours ago
3 knightlike moves is enough
sarjinius   1
N 4 hours ago by markam
Source: Philippine Mathematical Olympiad 2025 P6
An ant is on the Cartesian plane. In a single move, the ant selects a positive integer $k$, then either travels [list]
[*] $k$ units vertically (up or down) and $2k$ units horizontally (left or right); or
[*] $k$ units horizontally (left or right) and $2k$ units vertically (up or down).
[/list]
Thus, for any $k$, the ant can choose to go to one of eight possible points.
Prove that, for any integers $a$ and $b$, the ant can travel from $(0, 0)$ to $(a, b)$ using at most $3$ moves.
1 reply
sarjinius
Mar 9, 2025
markam
4 hours ago
Weird Geo
Anto0110   0
4 hours ago
In a trapezium $ABCD$, the sides $AB$ and $CD$ are parallel and the angles $\angle ABC$ and $\angle BAD$ are acute. Show that it is possible to divide the triangle $ABC$ into 4 disjoint triangle $X_1. . . , X_4$ and the triangle $ABD$ into 4 disjoint triangles $Y_1,. . . , Y_4$ such that the triangles $X_i$ and $Y_i$ are congruent for all $i$.
0 replies
Anto0110
4 hours ago
0 replies
Is the geometric function injective?
Project_Donkey_into_M4   1
N 5 hours ago by Funcshun840
Source: Mock RMO TDP and Kayak 2018, P3
A non-degenerate triangle $\Delta ABC$ is given in the plane, let $S$ be the set of points which lie strictly inside it. Also let $\mathfrak{C}$ be the set of circles in the plane. For a point $P \in S$, let $A_P, B_P, C_P$ be the reflection of $P$ in sides $\overline{BC}, \overline{CA}, \overline{AB}$ respectively. Define a function $\omega: S \rightarrow \mathfrak{C}$ such that $\omega(P)$ is the circumcircle of $A_PB_PC_P$. Is $\omega$ injective?

Note: The function $\omega$ is called injective if for any $P, Q \in S$, $\omega(P) = \omega(Q) \Leftrightarrow P = Q$
1 reply
Project_Donkey_into_M4
Yesterday at 6:23 PM
Funcshun840
5 hours ago
a