Problem 56: Brazil MO 2013, Day 1, Problem 2

by henderson, Dec 16, 2016, 3:48 PM

$${\color{red}\bf{Problem \ 56}}$$Arnaldo and Bernaldo play the following game: given a fixed finite set of positive integers $A$ known by both players, Arnaldo picks a number $a \in A$ but doesn't tell it to anyone. Bernaldo thens pick an arbitrary positive integer $b$ (not necessarily in $A$). Then Arnaldo tells the number of divisors of $ab$. Show that Bernaldo can choose $b$ in a way that he can find out the number $a$ chosen by Arnaldo.
(Brazil MO 2013)
$${\color{red}\bf{Solution}}$$Let us say the primes that divide at least one element from $A$ are $p_0,p_1,\ldots,p_k$. An element $a\in A$ can be represented then as $a=\prod_{j=0}^k p_j^{\alpha_j}$, with $\alpha_j \geq 0$. When $b=\prod_{j=0}^k p_j^{\beta_j}$, the number of divisors of $ab$ is $\tau(ab) = \prod_{j=0}^k (1+ \alpha_j + \beta_j)$. Let us plug in $\beta_j = x^{2^j}$; then $P(x) = \prod_{j=0}^k (1+\alpha_j + x^{2^j})$ is a polynomial in $x$ of degree $2^{k+1} - 1$, where the coefficient of $x^{2^{k+1} - 2^j - 1}$ is precisely $1+\alpha_j$. In fact, if we take $n > \prod_{j=0}^k (1+\alpha_j)$, then $P(n)$ is the writing in basis $n$ of some (huge) integer, and all "digits" can be determined, namely also the values $\alpha_j$. So all is left to do is to take $n > \prod_{j=0}^k (1+a_j)$, where $a_j = \max_{A} \alpha_j$, and $\beta_j = n^{2^j}$.
This post has been edited 3 times. Last edited by henderson, Jan 4, 2017, 2:42 PM

Comment

J
U VIEW ATTACHMENTS T PREVIEW J CLOSE PREVIEW rREFRESH
J

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Why did you take beta j as x^2^j

by alpha_ne.elsh, Nov 14, 2024, 5:46 PM

"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein

avatar

henderson
Archives
Shouts
Submit
7 shouts
Tags
About Owner
  • Posts: 312
  • Joined: Mar 10, 2015
Blog Stats
  • Blog created: Feb 11, 2016
  • Total entries: 77
  • Total visits: 20961
  • Total comments: 32
Search Blog
a