Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Central sequences
EeEeRUT   11
N 2 minutes ago by jonh_malkovich
Source: EGMO 2025 P2
An infinite increasing sequence $a_1 < a_2 < a_3 < \cdots$ of positive integers is called central if for every positive integer $n$ , the arithmetic mean of the first $a_n$ terms of the sequence is equal to $a_n$.

Show that there exists an infinite sequence $b_1, b_2, b_3, \dots$ of positive integers such that for every central sequence $a_1, a_2, a_3, \dots, $ there are infinitely many positive integers $n$ with $a_n = b_n$.
11 replies
EeEeRUT
Apr 16, 2025
jonh_malkovich
2 minutes ago
geometry problem
kjhgyuio   2
N 11 minutes ago by ricarlos
........
2 replies
kjhgyuio
May 11, 2025
ricarlos
11 minutes ago
Sequence inequality
hxtung   20
N 28 minutes ago by awesomeming327.
Source: IMO ShortList 2003, algebra problem 6
Let $n$ be a positive integer and let $(x_1,\ldots,x_n)$, $(y_1,\ldots,y_n)$ be two sequences of positive real numbers. Suppose $(z_2,\ldots,z_{2n})$ is a sequence of positive real numbers such that $z_{i+j}^2 \geq x_iy_j$ for all $1\le i,j \leq n$.

Let $M=\max\{z_2,\ldots,z_{2n}\}$. Prove that \[
	\left( \frac{M+z_2+\dots+z_{2n}}{2n} \right)^2
	\ge
	\left( \frac{x_1+\dots+x_n}{n} \right)
	\left( \frac{y_1+\dots+y_n}{n} \right). \]

comment

Proposed by Reid Barton, USA
20 replies
+1 w
hxtung
Jun 9, 2004
awesomeming327.
28 minutes ago
I guess a very hard function?
Mr.C   20
N 30 minutes ago by jasperE3
Source: A hand out
Find all functions from the reals to it self such that
$f(x)(f(y)+f(f(x)-y))=x^2$
20 replies
Mr.C
Mar 19, 2020
jasperE3
30 minutes ago
No more topics!
Perpendicularity with Incircle Chord
tastymath75025   31
N Apr 24, 2025 by cj13609517288
Source: 2019 ELMO Shortlist G3
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Proposed by Ankit Bisain
31 replies
tastymath75025
Jun 27, 2019
cj13609517288
Apr 24, 2025
Perpendicularity with Incircle Chord
G H J
G H BBookmark kLocked kLocked NReply
Source: 2019 ELMO Shortlist G3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tastymath75025
3223 posts
#1 • 8 Y
Y by amar_04, GeoMetrix, itslumi, tiendung2006, Adventure10, Mango247, cubres, Rounak_iitr
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Proposed by Ankit Bisain
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rocketscience
466 posts
#2 • 6 Y
Y by XianYing-Li, Muaaz.SY, Adventure10, Mango247, MS_asdfgzxcvb, cubres
Define $T$ instead as the foot to $EF$ from $D$; we wish to show $T \in GH$. Let $(AI)$ meet $(ABC)$ a second time at a point $T'$ so that $I, T, T'$ are collinear, say by inversion about the incircle. By radical axis on $(AI), (ABC), (A'EFG)$ we get a point $X = AT' \cap EF \cap A'G$. Since $\angle XGA = \angle XMA = 90^{\circ}$, point $X$ lies on $(AMG)$.

Now note that
\[-1 = (A, I; E, F) \stackrel{T'}{=} (X, T; E, F),\]so by properties of harmonic divisions we have $TM \cdot TX = TE \cdot TF$. This implies that $T$ lies on the radical axis of $(AMG)$ and $(A'EFG)$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wizard_32
1566 posts
#3 • 4 Y
Y by Ramisoka, Adventure10, Mango247, cubres
This is a really rich configuration!
tastymath75025 wrote:
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Proposed by Ankit Bisain
Let $X=(AMG) \cap AT.$ Since $T$ lies on the radical axis of $(AMG),(EFG),$ hence power of a point gives $X \in (AFE).$ Define $Y=(AEF) \cap (ABC).$ Clearly $\measuredangle IYA=\pi/2=\measuredangle A'YA,$ and so $Y \in A'I.$

Now define $P$ to be the radical center of $(AEF), (FEG), (ABC).$ Hence $P$ lies on $AY,EF$ and $GA'.$

Key Claim: $I,T$ and $Y$ are collinear.
Proof: We have $$\measuredangle PMA=\pi/2=\measuredangle A'GA=\measuredangle PGA$$so $P \in (AMG).$
Further, we get $\measuredangle PXA=\pi/2=\measuredangle IXA$ and so $I,X,P$ are also collinear. $\square$

Since $AT \perp PI, PT \perp AI,$ hence $T$ is the orthocenter of $\triangle API.$ Hence $IT \perp AP$ which implies that $T, I, Y$ are collinear.
Notice that the power of $I$ with respect to $(AMP)$ is $ $ $IM \cdot IA=r^2,$ where $r$ is the inradius of $ABC.$

So inverting about the incircle of $\triangle ABC,$ we find that $T=AX \cap FE \mapsto (IMP) \cap (IEF)=Y.$ But $Y \in (ABC),$ which is the image of the nine-point circle of $DEF$ under this inversion. So $T$ must be the foot of the perpendicular from $D,$ and so we are done. $\blacksquare$
[asy]
  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -14.261007052484016, xmax = 13.427339353659017, ymin = -10.769656125630911, ymax = 7.171127796903298;  /* image dimensions */
pen zzttff = rgb(0.6,0.2,1); pen ccqqqq = rgb(0.2,0,0); 

draw((-3.6121766694775372,3.8402861529741235)--(-5.87,-5.79)--(6.97,-5.67)--cycle, linewidth(0) + ccqqqq); 
 /* draw figures */
draw(circle((0.5170807117156297,-2.207636153572406), 7.323123018641797), linewidth(0.2) + blue); 
draw(circle((-1.649252980059181,-2.412125033326211), 3.338282946745299), linewidth(0.4) + blue); 
draw(circle((-0.6253105070707227,-5.673642231754901), 5.869971922586647), linewidth(0.2)); 
draw((-4.899405335760015,-1.6501258881411427)--(0.5821675789741579,0.07079569059024113), linewidth(0.4)); 
draw((-1.649252980059181,-2.412125033326211)--(-3.6121766694775372,3.8402861529741235), linewidth(0.4)); 
draw(circle((-6.943377279563433,0.2513213626910499), 4.896689266282706), linewidth(0.4) + zzttff); 
draw(circle((-2.6307148247683596,0.7140805598239562), 3.2766490143534344), linewidth(0.4) + linetype("4 4")); 
draw((-10.274577889649324,-3.3376434275920284)--(-4.899405335760015,-1.6501258881411427), linewidth(0.4)); 
draw((-2.052141797423591,0.020277581592099976)--(-6.399034138217151,-4.615017745406283), linewidth(0.4)); 
draw((-3.084191616558338,-1.0802455804311601)--(-1.6180554364422242,-5.750262200340581), linewidth(0.4)); 
draw((-10.274577889649324,-3.3376434275920284)--(4.646338092908797,-8.255558460118936), linewidth(0.4) + linetype("4 4")); 
draw((-3.6121766694775372,3.8402861529741235)--(4.646338092908797,-8.255558460118936), linewidth(0.2)); 
draw((-4.899405335760015,-1.6501258881411427)--(-1.6180554364422242,-5.750262200340581), linewidth(0.2)); 
draw((-1.6180554364422242,-5.750262200340581)--(0.5821675789741579,0.07079569059024113), linewidth(0.2)); 
draw((-5.821271838735171,1.460253933705996)--(4.646338092908797,-8.255558460118936), linewidth(0.4) + linetype("4 4")); 
draw((-2.926570903626123,-2.549184361059153)--(-3.6121766694775372,3.8402861529741235), linewidth(0.4)); 
draw((-3.6121766694775372,3.8402861529741235)--(-10.274577889649324,-3.3376434275920284), linewidth(0.4)); 
draw((-10.274577889649324,-3.3376434275920284)--(-1.649252980059181,-2.412125033326211), linewidth(0.4) + linetype("4 4")); 
 /* dots and labels */
dot((-3.6121766694775372,3.8402861529741235),dotstyle); 
label("$A$", (-3.9338597725524567,4.352238105697483), NE * labelscalefactor); 
dot((-5.87,-5.79),dotstyle); 
label("$B$", (-6.252198957843215,-6.396425389741515), NE * labelscalefactor); 
dot((6.97,-5.67),dotstyle); 
label("$C$", (7.183630411455497,-6.317391099333876), NE * labelscalefactor); 
dot((0.5170807117156297,-2.207636153572406),linewidth(4pt) + dotstyle); 
label("$O$", (0.6237843076214202,-1.9968498903829057), NE * labelscalefactor); 
dot((-1.649252980059181,-2.412125033326211),linewidth(4pt) + dotstyle); 
label("$I$", (-1.5628310603232722,-3.0769851926206484), NE * labelscalefactor); 
dot((-1.6180554364422242,-5.750262200340581),linewidth(4pt) + dotstyle); 
label("$D$", (-1.4047624795079932,-6.264701572395449), NE * labelscalefactor); 
dot((0.5821675789741579,0.07079569059024113),linewidth(4pt) + dotstyle); 
label("$E$", (0.6764738345598466,0.26879976796943206), NE * labelscalefactor); 
dot((-4.899405335760015,-1.6501258881411427),linewidth(4pt) + dotstyle); 
label("$F$", (-5.646269398051312,-1.7070574922215602), NE * labelscalefactor); 
dot((4.646338092908797,-8.255558460118936),linewidth(4pt) + dotstyle); 
label("$A'$", (4.575498828003394,-8.899177919316772), NE * labelscalefactor); 
dot((-6.399034138217151,-4.615017745406283),linewidth(4pt) + dotstyle); 
label("$G$", (-7.068886625388823,-5.237255797096133), NE * labelscalefactor); 
dot((-2.1586188783929288,-0.789665098775451),linewidth(4pt) + dotstyle); 
label("$M$", (-2.063381566238322,-0.5742326630453913), NE * labelscalefactor); 
dot((-2.926570903626123,-2.549184361059153),linewidth(4pt) + dotstyle); 
label("$X$", (-2.985448287660783,-3.1033299560898615), NE * labelscalefactor); 
dot((-10.274577889649324,-3.3376434275920284),linewidth(4pt) + dotstyle); 
label("$P$", (-10.54639540332496,-4.078086204450751), NE * labelscalefactor); 
dot((-5.821271838735171,1.460253933705996),linewidth(4pt) + dotstyle); 
label("$Y$", (-6.331233248250855,1.5860379414300936), NE * labelscalefactor); 
dot((-2.052141797423591,0.020277581592099976),linewidth(4pt) + dotstyle); 
label("$H$", (-1.9580025123614697,0.2424550045002188), NE * labelscalefactor); 
dot((-3.084191616558338,-1.0802455804311601),linewidth(4pt) + dotstyle); 
label("$T$", (-3.0644825780684224,-0.6796117169222443), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
This post has been edited 1 time. Last edited by Wizard_32, Jul 4, 2019, 3:26 AM
Reason: Undefined variable.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Flash_Sloth
230 posts
#4 • 4 Y
Y by Adventure10, Mango247, Radin.AmirAslani, cubres
Let $N$ be the middle of the arc $BC$.
Claim1: The intersection of $A'I$ and $ND$ lies on $\odot O$.
Proof: Let $J = ND \cap \odot O$, then $ND \cdot NJ = NC^2 = NI^2$, thus $\triangle NID \sim \triangle NJI$. Hence
\[\angle IJN = \angle NID = 90^\circ - (\angle B + \frac{1}{2} \angle A) =90^\circ - \angle NBA = 90^\circ - \angle NA'A = \angle A'AN = \angle A'JN \]Therefore, $A',I,J$ are collinear.
Claim 2: Let $T = A'J \cap EF$, then $DT \perp EF$.
Proof: Since $90^\circ = \angle IJA = \angle IMT$, we have $IT \cdot IJ = IM \cdot IA = r^2 = ID^2$. Therefore,
\[ \angle TDI = \angle IJD =\angle NID\]implying that $DT \parallel NI$, hence $DT \perp EF$.
Claim 3: $AJ$, $EF$, $A'G$ are concurrent, denote the intersection by $L$.
Proof: Application of radical axis theorem to $\odot O$, $\odot (AEFIJ)$ and $\odot(A'EFG)$.
Claim 4: $L,G,M,A$ are concyclic; $L,I,M,J$ are concyclic.
Proof: Since $\angle AML =\angle AGL=90^\circ$ and $\angle IML=\angle IJL =90^\circ$ as well.
Finally, $MT \cdot TL = IT \cdot TJ = FT \cdot TE$, meaning that $T$ lies on the radical axis of $\odot(AMLG)$ and $\odot(A'EFG)$, which is $HG$.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jbaca
225 posts
#5 • 4 Y
Y by translate, Adventure10, Mango247, cubres
Solution. Redefine $T$ as the $D$-foot of altitude in $\bigtriangleup DEF$. It's not hard to show that $T,\ I$ and $A'$ are collinear. Redefine also $H$ as $\overline{GT}\cap (A'EF)$, $G\neq H$, so it suffices to show that $A,\ H,\ M$ and $G$ are concyclic.
Let $R=\overline{A'I}\cap (ABC),\ R\neq A'$. Clearly, it lies on $(AEF)$. By the radical axis theorem, $AR,\ EF$ and $GA'$ concur at a point, say $P$. Moreover, being $\angle AMP=\angle AGP=90^\circ$, we infer that $AMGP$ is cyclic. Because $\angle TMI=\angle ART=90^\circ$, we get
$$PT\cdot PM=PR\cdot PA=PF\cdot PE$$which gives us that $(P,T;F,E)=-1$, implying the following equality
$$PT\cdot TM=FT\cdot TE=GT\cdot TH$$thus $H$ lies on $(PGM)$ and then it lies on $(AMG)$ as well, as required. $\blacksquare$
This post has been edited 1 time. Last edited by jbaca, Jun 30, 2019, 4:32 AM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#6 • 4 Y
Y by AlastorMoody, mueller.25, amar_04, cubres
Here i present a solution that I,mueller.25,amar_04 found.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -24.620625249953825, xmax = 27.856252010786847, ymin = -16.24019088506529, ymax = 18.41499364361862;  /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wvvxds = rgb(0.396078431372549,0.3411764705882353,0.8235294117647058); pen ffqqff = rgb(1,0,1); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen qqffff = rgb(0,1,1); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen dbwrru = rgb(0.8588235294117647,0.3803921568627451,0.0784313725490196); 
 /* draw figures */
draw((-3.527646662682087,13.712520226747058)--(-7.26,-4.11), linewidth(0.4) + rvwvcq); 
draw((-7.26,-4.11)--(13.395645203182287,-4.419894946997829), linewidth(0.4) + rvwvcq); 
draw((13.395645203182287,-4.419894946997829)--(-3.527646662682087,13.712520226747058), linewidth(0.4) + rvwvcq); 
draw(circle((-0.14166328775828607,1.5839579345872608), 5.800101026607598), linewidth(0.4) + wvvxds); 
draw((-5.818616292086269,2.7728130584379342)--(-0.14166328775828446,1.5839579345872612), linewidth(0.4) + ffqqff); 
draw((-0.14166328775828446,1.5839579345872612)--(4.098565608016035,5.541435771580792), linewidth(0.4) + green); 
draw((-0.14166328775828446,1.5839579345872612)--(-0.22867193493617494,-4.2154904369538455), linewidth(0.4) + wrwrwr); 
draw(circle((3.176913954878332,3.006394992923919), 12.632191044978963), linewidth(0.4)); 
draw((-3.527646662682087,13.712520226747058)--(9.88147457243875,-7.699730240899219), linewidth(0.4) + qqffff); 
draw((-5.818616292086269,2.7728130584379342)--(4.098565608016035,5.541435771580792), linewidth(0.4) + linetype("2 2") + wvvxds); 
draw(circle((1.2960492996280217,-3.5659157486317214), 9.528795798604248), linewidth(0.4) + dtsfsf); 
draw(circle((-9.961397440505575,6.766318481782098), 9.467991748670812), linewidth(0.4) + dtsfsf); 
draw((-0.5445625005599162,5.78342099642709)--(-8.17647769874491,-2.531903351900492), linewidth(0.4) + ffqqff); 
draw((-2.442737265572527,3.7152718581028)--(-0.22867193493617494,-4.2154904369538455), linewidth(0.4) + qqffff); 
draw((-0.14166328775828446,1.5839579345872612)--(-5.12964304175612,-1.3759795466042293), linewidth(0.4) + green); 
draw((-0.14166328775828446,1.5839579345872612)--(-0.5128097549578929,7.372172013104032), linewidth(0.4) + wrwrwr); 
draw((-5.12964304175612,-1.3759795466042293)--(-0.5128097549578929,7.372172013104032), linewidth(0.4) + ffqqff); 
draw((-3.527646662682087,13.712520226747058)--(-0.14166328775828446,1.5839579345872612), linewidth(0.4) + wrwrwr); 
draw((9.88147457243875,-7.699730240899219)--(-2.442737265572527,3.7152718581028), linewidth(0.4) + blue); 
draw((-16.395148218329062,-0.17988326318285885)--(-3.527646662682087,13.712520226747058), linewidth(0.4) + linetype("4 4") + wvvxds); 
draw(circle((-1.8346549752201853,7.64823908066716), 6.296167617885918), linewidth(0.4)); 
draw((-5.818616292086269,2.7728130584379342)--(-0.5128097549578929,7.372172013104032), linewidth(0.4) + wrwrwr); 
draw((-0.5128097549578929,7.372172013104032)--(4.098565608016035,5.541435771580792), linewidth(0.4) + wrwrwr); 
draw((-8.010663903216715,8.872428769327545)--(-5.818616292086269,2.7728130584379342), linewidth(0.4) + blue); 
draw((-8.010663903216715,8.872428769327545)--(4.098565608016035,5.541435771580792), linewidth(0.4) + blue); 
draw((-16.395148218329062,-0.17988326318285885)--(9.88147457243875,-7.699730240899219), linewidth(0.4) + linetype("4 4") + wvvxds); 
draw((-3.527646662682087,13.712520226747058)--(-8.17647769874491,-2.531903351900492), linewidth(0.4) + ffqqff); 
draw((-5.818616292086269,2.7728130584379342)--(-0.22867193493617494,-4.2154904369538455), linewidth(0.4) + dbwrru); 
draw((-0.22867193493617494,-4.2154904369538455)--(4.098565608016035,5.541435771580792), linewidth(0.4) + dbwrru); 
draw((-8.010663903216715,8.872428769327545)--(-2.442737265572527,3.7152718581028), linewidth(0.4) + blue); 
draw((-16.395148218329062,-0.17988326318285885)--(-5.818616292086269,2.7728130584379342), linewidth(0.4) + linetype("4 4") + wvvxds); 
 /* dots and labels */
dot((-3.527646662682087,13.712520226747058),dotstyle); 
label("$A$", (-3.391343085381462,14.053279169998621), NE * labelscalefactor); 
dot((-7.26,-4.11),dotstyle); 
label("$B$", (-7.139691461148653,-3.768413562058098), NE * labelscalefactor); 
dot((13.395645203182287,-4.419894946997829),dotstyle); 
label("$C$", (13.71475586584699,-4.722538603162473), NE * labelscalefactor); 
dot((-0.14166328775828446,1.5839579345872612),linewidth(4pt) + dotstyle); 
label("$I$", (-0.017829547190990128,1.8541090015926833), NE * labelscalefactor); 
dot((-0.22867193493617494,-4.2154904369538455),linewidth(4pt) + dotstyle); 
label("$D$", (-0.08598133584130269,-3.9387930336838792), NE * labelscalefactor); 
dot((4.098565608016035,5.541435771580792),linewidth(4pt) + dotstyle); 
label("$E$", (4.2416572434535444,5.806912743310808), NE * labelscalefactor); 
dot((-5.818616292086269,2.7728130584379342),linewidth(4pt) + dotstyle); 
label("$F$", (-5.6744280051669325,3.046765302973152), NE * labelscalefactor); 
dot((3.1769139548783314,3.0063949929239193),linewidth(4pt) + dotstyle); 
label("$O$", (3.3216080966743253,3.2852965632492457), NE * labelscalefactor); 
dot((9.88147457243875,-7.699730240899219),dotstyle); 
label("$A'$", (10.034559278730113,-7.346382466199505), NE * labelscalefactor); 
dot((-8.17647769874491,-2.531903351900492),linewidth(4pt) + dotstyle); 
label("$G$", (-8.025664713602715,-2.269074211751223), NE * labelscalefactor); 
dot((-0.8600253420351174,4.157124415009363),linewidth(4pt) + dotstyle); 
label("$M$", (-0.733423328019272,4.443876970304559), NE * labelscalefactor); 
dot((-0.5445625005599162,5.78342099642709),linewidth(4pt) + dotstyle); 
label("$H$", (-0.3926643847677092,6.045444003586902), NE * labelscalefactor); 
dot((-2.442737265572527,3.7152718581028),linewidth(4pt) + dotstyle); 
label("$T$", (-2.3009144669764607,4.000890344077527), NE * labelscalefactor); 
dot((-5.12964304175612,-1.3759795466042293),linewidth(4pt) + dotstyle); 
label("$K$", (-4.992910118663807,-1.1104938046959105), NE * labelscalefactor); 
dot((-0.5128097549578929,7.372172013104032),linewidth(4pt) + dotstyle); 
label("$L$", (-0.3926643847677092,7.647011036869246), NE * labelscalefactor); 
dot((-16.395148218329062,-0.17988326318285885),linewidth(4pt) + dotstyle); 
label("$T'$", (-16.272031140290537,0.08216249668455824), NE * labelscalefactor); 
dot((-8.010663903216715,8.872428769327545),linewidth(4pt) + dotstyle); 
label("$J$", (-7.889361136302091,9.14635038717612), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

Proof: Let $J=A'I \cap \odot(ABC)$. Notice that it is sufficient to show that if $T$ is the foot of the altitude from $D$ onto $EF$ then $T \in$ radical axis of $\odot(AMG)$ and $\odot(A'EF)$. Now we state a lemma.

Claim: If $AJ \cap EF=T'$ then $T'$ is the harmonic conjugate of $T$ w.r.t $EF$.

Proof: Firstly it's a well known fact that $\overline{(I,T,J)}$ is a collinear triple (see here ) Notice that since $\overline{IE}=\overline{IF} \implies \angle FJI=\angle IJE$. But also notice that $\angle TJT'=90^\circ$ $\implies$ $(T,T';F,E)=-1$. Done $\square$.

Now back to the main problem. Firstly notice that by radical axis theorem on $\odot(ABC),\odot(AEF),\odot(A'EF) \implies AJ,EF,A'G$ are concurrent. So we could define $T'=EF \cap A'G$. But notice that $\angle AMT'=90^\circ$ and also $\angle AGT'=90^\circ$ $\implies$ $T' \in \odot(AMG)$. But now finally notice that $$\text{Pow}_{\odot(A'FE)}{T}=\overline{TF} \cdot \overline{TE}=\overline{TT'} \cdot \overline{TM}=\text{Pow}_{\odot(AMG)}{T}$$where the last part follows from the claim. This immediately implies $T \in $ radical axis of $\odot(A'FE)$ and $\odot(AMG)$ as desired $\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#7 • 1 Y
Y by cubres
Comparing to imo problems ,what level is this.Can anyone give his opinion.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AmirKhusrau
230 posts
#8 • 1 Y
Y by cubres
Maxito12345 wrote:
Comparing to imo problems ,what level is this.Can anyone give his opinion.

I would say $\leq$ G4. Actually this is quite a well known configuration now (just a mix of well known lemmas), so it is easy to most of the people.

@below Hmm maybe.
This post has been edited 2 times. Last edited by AmirKhusrau, May 13, 2020, 11:58 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#9 • 2 Y
Y by Mango247, cubres
AmirKhusrau wrote:
Maxito12345 wrote:
Comparing to imo problems ,what level is this.Can anyone give his opinion.

I would say $\leq$ G4. Actually this is quite a well known configuration now (just a mix of well known lemmas), so it is easy to most of the people.

Could it be a p2 (like the one of imo 2019)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathematicsislovely
245 posts
#10 • 1 Y
Y by cubres
Let circumcircle of $AEF$ cut $(ABC)$ at $R$.

Claim:$AR,BG,EF$ concur at a point.
proof: Radical axis theorem on $(ARFE),(EFA'),(ABC)$ shows that these 3 lines are concurrent.Let this point of concurrency be $S$.$\blacksquare$

Claim:$S$ lies on $AMG$
proof: $\angle AMS= \angle AGS=90^\circ$$\blacksquare$

Now observe that,$ST.TM=GT.TH=FT.TE$. As $M$ is the midpoint of $EF$ we have $(S,T;F,,E)=-1$.[It can be seen considering a circle with diameter $EF$ and centre $M$ then under inversion in this circle $S,T$ swaps, as $ST.TM=FT.TE$].So we have $ST.SM=SF.SE$.From this we get the ninepoint circle of $DEF$ cut $EF$ in $T$ except $M$.So $DT\perp EF$$\blacksquare$
This post has been edited 1 time. Last edited by Mathematicsislovely, May 13, 2020, 12:59 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#11 • 1 Y
Y by cubres
Maxito12345 wrote:
AmirKhusrau wrote:
Maxito12345 wrote:
Comparing to imo problems ,what level is this.Can anyone give his opinion.

I would say $\leq$ G4. Actually this is quite a well known configuration now (just a mix of well known lemmas), so it is easy to most of the people.

Could it be a p2 (like the one of imo 2019)

?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
khina
994 posts
#12 • 1 Y
Y by cubres
i think its a medium problem, so sure.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#13 • 1 Y
Y by cubres
Mr Evan chen ,how many mohs?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#14 • 1 Y
Y by cubres
bump????
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathlogician
1051 posts
#15 • 1 Y
Y by cubres
My solution is the same as probably half of this thread, but whatever.

Let $T'$ be the foot of the perpendicular from $D$ to $EF$. Let $R = EF \cap (AMG)$, and let $Q = (AEIF) \cap (ABC)$. It suffices to show that $G,T',H$ are collinear, or by radical axes and harmonic bundles it suffices to show that $(E,F;R,T') = -1$.

Claim: $Q,T',I$ collinear.

Proof: We invert around the incircle. let $Q'$ be the intersection of $T'I$ with $(ABC)$. Note that after the inversion, $Q'$ gets sent to the intersection of line $EF$ with the nine-point circle of $(DEF)$, so $T'$ and $Q'$ are inverses. Now $\angle AQ'I = \angle AMT' = 90$, so $Q=Q'$.

Now, note that $\angle RGA + \angle AGA' = 90+90=180$, so $R,G,A'$ are collinear. Moreover, by radical axes on $(AEIF), (A'GFE), (ABA'C)$ we find that $A,Q,R$ are collinear. Now, $(E,F;R,T') \stackrel{Q}{=} (E,F;A,I) = -1$, which is what we wanted.
This post has been edited 2 times. Last edited by mathlogician, Feb 22, 2021, 5:09 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anyone__42
92 posts
#17 • 1 Y
Y by cubres
check this https://artofproblemsolving.com/community/c946900h1911664_properties_of_the_sharkydevil_point
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Dr_Vex
562 posts
#18 • 1 Y
Y by cubres
LeTs SpAm
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -8.342636385018698, xmax = 22.10453829563805, ymin = -19.202391801926474, ymax = 9.571861192979963;  /* image dimensions */
pen ttqqqq = rgb(0.2,0,0); pen wvvxds = rgb(0.396078431372549,0.3411764705882353,0.8235294117647058); pen wwccff = rgb(0.4,0.8,1); pen ttffcc = rgb(0.2,1,0.8); pen ccwwff = rgb(0.8,0.4,1); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((0.36318383958057093,4.154887985795261)--(-0.6571422088705283,-5.117548735216507), linewidth(0.7) + ttqqqq); 
draw((-0.6571422088705283,-5.117548735216507)--(8.68,-4.66), linewidth(0.7) + ttqqqq); 
draw((8.68,-4.66)--(0.36318383958057093,4.154887985795261), linewidth(0.7) + ttqqqq); 
draw(circle((2.4809144209628675,-2.1642204929126425), 2.796198553868902), linewidth(0.7) + wvvxds); 
draw(circle((3.8168243046372794,-0.9175018011374343), 6.136511273717033), linewidth(0.7) + wvvxds); 
draw(circle((1.4220491302717195,0.9953337464413093), 3.3322632992082095), linewidth(0.7) + wvvxds); 
draw((0.36318383958057093,4.154887985795261)--(7.270464769693989,-5.98989158807013), linewidth(0.7) + wwccff); 
draw(circle((3.228685230098349,-4.395498047486284), 4.344890402409415), linewidth(0.7) + wvvxds); 
draw((-0.2985074562530282,-1.858376772832902)--(4.514749641394138,-0.2453039629948295), linewidth(0.7) + ttffcc); 
draw((4.514749641394138,-0.2453039629948295)--(2.617772544652193,-4.957067822545749), linewidth(0.7) + ttffcc); 
draw((2.617772544652193,-4.957067822545749)--(-0.2985074562530282,-1.858376772832902), linewidth(0.7) + ttffcc); 
draw(circle((-2.7952970494669476,0.2006267586689261), 5.060848088891136), linewidth(0.7) + wvvxds); 
draw((1.389697180979825,-1.2926066627978439)--(2.617772544652193,-4.957067822545749), linewidth(0.7) + ccwwff); 
draw((2.2525659983910864,-0.16167426106806954)--(-1.112606871601543,-4.572290289023016), linewidth(0.7) + wrwrwr); 
draw((-1.8933890982991697,1.329770657951845)--(7.270464769693989,-5.98989158807013), linewidth(0.7) + linetype("4 4") + ccwwff); 
draw((-1.8933890982991697,1.329770657951845)--(4.11717186677921,-7.0466585093944225), linewidth(0.7) + ccwwff); 
draw((0.36318383958057093,4.154887985795261)--(4.11717186677921,-7.0466585093944225), linewidth(0.7) + ccwwff); 
draw((-5.953777845649177,-3.7536345426339013)--(0.36318383958057093,4.154887985795261), linewidth(0.7) + wwccff); 
draw((-5.953777845649177,-3.7536345426339013)--(-0.2985074562530282,-1.858376772832902), linewidth(0.7) + wwccff); 
draw((-5.953777845649177,-3.7536345426339013)--(7.270464769693989,-5.98989158807013), linewidth(0.7) + wwccff); 
draw((0.36318383958057093,4.154887985795261)--(-1.112606871601543,-4.572290289023016), linewidth(0.7) + ccwwff); 
 /* dots and labels */
dot((0.36318383958057093,4.154887985795261),dotstyle); 
label("$A$", (0.49039011574325947,4.486179268298825), NE * labelscalefactor); 
dot((-0.6571422088705283,-5.117548735216507),dotstyle); 
label("$B$", (-0.513362895706963,-4.781806870758248), NE * labelscalefactor); 
dot((8.68,-4.66),dotstyle); 
label("$C$", (8.821540110780106,-4.313388798748144), NE * labelscalefactor); 
dot((2.4809144209628675,-2.1642204929126425),linewidth(4pt) + dotstyle); 
label("$I$", (2.5982714397887268,-1.9043815712676047), NE * labelscalefactor); 
dot((2.617772544652193,-4.957067822545749),linewidth(4pt) + dotstyle); 
label("$D$", (2.765563608363764,-4.681431569613226), NE * labelscalefactor); 
dot((4.514749641394138,-0.2453039629948295),linewidth(4pt) + dotstyle); 
label("$E$", (4.6392358964041795,0.036207584202829476), NE * labelscalefactor); 
dot((-0.2985074562530282,-1.858376772832902),linewidth(4pt) + dotstyle); 
label("$F$", (-0.1787785585568889,-1.6032556678325374), NE * labelscalefactor); 
dot((3.8168243046372794,-0.9175018011374337),linewidth(4pt) + dotstyle); 
label("$O$", (3.9366087883890235,-0.6664195238123277), NE * labelscalefactor); 
dot((7.270464769693989,-5.98989158807013),linewidth(4pt) + dotstyle); 
label("$A'$", (7.4162858947497945,-5.718643014778459), NE * labelscalefactor); 
dot((-1.112606871601543,-4.572290289023016),linewidth(4pt) + dotstyle); 
label("$G$", (-0.9817809677170669,-4.313388798748144), NE * labelscalefactor); 
dot((2.108121092570555,-1.0518403679138657),linewidth(4pt) + dotstyle); 
label("$M$", (2.397520837498682,-0.7667948249573502), NE * labelscalefactor); 
dot((2.2525659983910864,-0.16167426106806954),linewidth(4pt) + dotstyle); 
label("$H$", (1.7618105969135414,0.13658288534785193), NE * labelscalefactor); 
dot((1.389697180979825,-1.2926066627978439),linewidth(4pt) + dotstyle); 
label("$T$", (1.5276015609084894,-1.03446229467741), NE * labelscalefactor); 
dot((-1.8933890982991697,1.329770657951845),linewidth(4pt) + dotstyle); 
label("$A_S$", (-2.6881610871824453,1.9098798722432486), NE * labelscalefactor); 
dot((4.11717186677921,-7.0466585093944225),linewidth(4pt) + dotstyle); 
label("$M'$", (4.23773469182409,-6.789312893658698), NE * labelscalefactor); 
dot((-5.953777845649177,-3.7536345426339013),linewidth(4pt) + dotstyle); 
label("$J$", (-5.833253856393142,-3.4769279558729567), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */

[/asy]
This post has been edited 1 time. Last edited by Dr_Vex, Jun 26, 2020, 9:29 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MP8148
888 posts
#19 • 2 Y
Y by Mango247, cubres
[asy]
size(8cm);
defaultpen(fontsize(8.5pt));

pair A = dir(125), B = dir(210), C = dir(330), O = origin, A1 = 2O-A, I = incenter(A,B,C), D = foot(I,B,C), E = foot(I,C,A), F = foot(I,A,B), T = foot(D,E,F), M = (E+F)/2, G = intersectionpoints(unitcircle,circumcircle(A1,E,F))[0], H = T+dir(G--T)*abs(E-T)*abs(F-T)/abs(G-T), J = extension(A1,G,E,F), N = dir(270), K = intersectionpoints(unitcircle,circumcircle(A,E,F))[1], L = intersectionpoint(unitcircle,A+dir(A--T)*0.0069--A+dir(A--T)*69);

draw(circumcircle(G,E,F)^^circumcircle(A,M,G));
draw(A--B--C--A--L^^unitcircle);
draw(H--G, dashed);
draw(A--J--E^^A1--J, blue);
draw(circumcircle(A,E,F));
draw(E--D--F^^T--D, gray);

dot("$A$", A, dir(90));
dot("$B$", B, dir(250));
dot("$C$", C, dir(330));
dot("$E$", E, dir(60));
dot("$F$", F, dir(135));
dot("$T$", T, dir(270));
dot("$M$", M, dir(315));
dot("$G$", G, dir(225));
dot("$H$", H, dir(45));
dot("$J$", J, dir(225));
dot("$A'$", A1, dir(315));
dot("$K$", K, dir(150));
dot("$L$", L, dir(240));
dot("$D$", D, dir(45));
[/asy]
Redefine $T$ be the point on $\overline{EF}$ such that $\overline{DT} \perp \overline{EF}$. Let $L = \overline{AT} \cap (ABC)$ and $K = (AEF) \cap (ABC)$.

By radical axis $\overline{AK}$, $\overline{EF}$, and $\overline{A'G}$ concur at a point $J$, which lies on $(AMG)$ from $\angle AGJ = \angle AMJ = 90^\circ$. It is well-known that $KBLC$ is harmonic, so $$-1  = (K,L;B,C) \overset{A}{=} (J,T;F,E).$$This implies $$\text{Pow}(T,(A'EF)) = ET \cdot FE = MT \cdot JT = \text{Pow}(T,(AMG)),$$so $T$ lies on the radical axis $\overline{HG}$ of $(A'EF)$ and $(AMG)$ as desired. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
snakeaid
125 posts
#20 • 2 Y
Y by Didier, cubres
Redefine $T$ to be the foot of the perpendicular from $D$ to $\overline{EF}$. We will prove that it lies on the radical axis of $(A'EF)$ and $(AMG)$. Let $R$ be the second intersection of $(ABC)$ and $(AEF)$. Then it's well-known that $R,T,I,A'$ are collinear. Notice that by radical center $A'G$, $AR$, $EF$ are concurrent, say at $S$. Then $\angle AGS=180^{\circ}-\angle AGA'=90^{\circ}=\angle SMA \implies S \in (AMG)$. Also $\angle SRI-180^{\circ}-\angle ARI=90^{\circ}=\angle SMI \implies SRMI$ is cyclic. Then $\text{Pow}(T,(AMG))=ST\cdot TM=RT\cdot TI=FT \cdot TE=\text{Pow}(T,(A'EF))$, as desired.
This post has been edited 1 time. Last edited by snakeaid, Dec 14, 2020, 8:55 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IndoMathXdZ
694 posts
#21 • 1 Y
Y by cubres
Funny problem.
Redefine $T$ to be the foot of perpendicular from $D$ to $EF$. We will prove $G,T,H$ are collinear instead, i.e.
\[ \text{Pow}_T (AMG) = \text{Pow}_T (EFA') \]Apparently, $\text{Pow}_T (EFA') = TE \cdot TF$, and by letting $EF \cap (AMG) = J$, we have $\text{Pow}_T (AMG) = TM \cdot TJ$.
Therefore, we need to prove
\[ TE \cdot TF = TM \cdot TJ \]which is equivalent to proving $(E,F;T,J) = -1$. Let $AJ \cap (ABC) = K$.

Claim 01. $J,G,A'$ collinear.
Proof. Let $A'G \cap (AMG) = J'$. Since $A'$ is the antipode of $A$, we have $\measuredangle AGA' = 90^{\circ}$, and hence $\measuredangle AGJ' = 90^{\circ} = \measuredangle AMJ' = \measuredangle AMJ$, proving $J' \equiv J$.

Claim 02. $K,D,Y$ collinear.
Proof. By our previous claim, $J$ lies on the radical axis of $(ABC)$ and $(EFA')$, and therefore,
\[ JK \cdot JA = JF \cdot JE \]which means $K = (AEF) \cap (ABC)$. Therefore, we know that $K$ is the incenter Miquel Point. Therefore, if $X$ and $Y$ are the midpoint of arcs $BC$ containing $A$ and not containing $A$ respectively, we have $K,D,Y$ collinear. By letting $AT \cap (ABC) = L$, we have $L,D,X$ by a well known lemma.
Thus,
\[ -1 = (X,Y;B,C) \overset{D}{=} (L,K;C,B) \overset{A}{=} (T,J;E,F) \]which is what we wanted.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
VulcanForge
626 posts
#22 • 1 Y
Y by cubres
Redefine $T$ to be the foot from $D$ to $EF$ and $H$ to be the second intersection of $GT$ with $(A'EF)$, and we will show $AGMH$ cyclic. Add in the point $S=(AEF) \cap (ABC)$ and let $L= AS \cap EF$. We will in fact show $G,M,H$ lie on the circle with diameter $AL$.

First note $M$ lies on that circle since $AM \perp ML$ for obvious reasons. By radical axis on $(ABC),(A'EF),(AEF)$ we get $A'GL$ collinear hence $AG \perp GL$. It remains to show $AH \perp HL$. Indeed, letting $LH$ intersect $(A'EF)$ again at $K$ and noting $KH$ and $AS$ intersect on the radical axis of $(AEF)$ and $(A'EF)$, we have $ASKH$ cyclic and thus $AH \perp HK$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeronimoStilton
1521 posts
#23 • 4 Y
Y by Mango247, Mango247, Mango247, cubres
Solution with hint from @above.

It is well-known that $T,I,A'$ are collinear along with $(AEF)\cap (ABC)=K\ne A$. Let line $EF$ intersect $(AGM)$ again at point $J$. Observe that $AJ$ is the diameter of $(AGM)$. Moreover, since $\angle A'GA=90^\circ=\angle AGJ$, $A',G,J$ are collinear. So by radical axis theorem on $(AEF)$, $(ABC)$, $(A'EF)$, $K$ lies on $AJ$.

Now $JT\cdot JM = JK\cdot JA=JE\cdot JF$, implying $(JT;EF)$ harmonic. It is well-known that $TF\cdot TE=TJ\cdot TM$ then. This implies the desired, since $T$ must lie on the radical axis of $(AHMGJ)$ and $(A'GFHE)$.

Sketch for second well-known part
This post has been edited 1 time. Last edited by GeronimoStilton, Apr 6, 2021, 9:27 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dwip_neel
40 posts
#25 • 1 Y
Y by cubres
deleted as required
This post has been edited 1 time. Last edited by dwip_neel, Aug 31, 2021, 11:09 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#27 • 1 Y
Y by cubres
[asy]
size(8cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -9.664267992854413, xmax = 8.910818228494016, ymin = -5.8993890210618805, ymax = 5.012432929595713;  /* image dimensions */
pen qqwuqq = rgb(0,0.39215686274509803,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen zzttff = rgb(0.6,0.2,1); pen ffvvqq = rgb(1,0.3333333333333333,0); 
 /* draw figures */
draw(circle((-1.7768158352132182,-0.7516822995618229), 1.7652367603555659), linewidth(0.8) + qqwuqq); 
draw(circle((-0.5651633926932255,-0.2764813199926565), 3.9584030633428173), linewidth(0.8) + fuqqzz); 
draw(circle((-2.3384079414166115,1.08415885457241), 1.919817270343408), linewidth(0.8) + qqwuqq); 
draw(circle((-1.2225909183064403,-2.5634401570264176), 3.1274391741754353), linewidth(0.8) + qqwuqq); 
draw(circle((-4.48752331183388,0.8510717143897553), 2.6078141261627823), linewidth(0.8) + qqwuqq); 
draw((-4.257045907673084,1.1514396538248008)--(-1.7768158352132182,-0.7516822995618229), linewidth(0.8) + linetype("4 4") + zzttff); 
draw((-1.8423521740436113,-2.5157020864132407)--(-2.5675883939229163,-0.1449093096982009), linewidth(0.8) + zzttff); 
draw((-6.075046564922025,-1.2178566162970728)--(-0.5151604411450491,0.4829376770825319), linewidth(0.8) + linetype("4 4") + ffvvqq); 
draw((-6.075046564922025,-1.2178566162970728)--(1.769673214613549,-3.472962639985313), linewidth(0.8) + linetype("4 4") + ffvvqq); 
draw((-6.075046564922025,-1.2178566162970728)--(-2.9,2.92), linewidth(0.8) + linetype("4 4") + ffvvqq); 
draw((-2.9,2.92)--(-3.88,-2.44), linewidth(1.2) + blue); 
draw((-3.88,-2.44)--(2.58,-2.68), linewidth(1.6) + blue); 
draw((2.58,-2.68)--(-2.9,2.92), linewidth(1.6) + blue); 
 /* dots and labels */
dot((-2.9,2.92),dotstyle); 
label("$A$", (-2.8131431421552735,3.138265037307195), NE * labelscalefactor); 
dot((-3.88,-2.44),dotstyle); 
label("$B$", (-3.791875263683722,-2.234349587253223), NE * labelscalefactor); 
dot((2.58,-2.68),dotstyle); 
label("$C$", (2.6635919208656196,-2.463414551866264), NE * labelscalefactor); 
dot((-1.8423521740436113,-2.5157020864132407),linewidth(4pt) + dotstyle); 
label("$D$", (-1.7511146698584463,-2.3592941134057908), NE * labelscalefactor); 
dot((-0.5151604411450491,0.4829376770825319),linewidth(4pt) + dotstyle); 
label("$E$", (-0.4391971452564833,0.639374514255838), NE * labelscalefactor); 
dot((-3.513267319342443,-0.4341967670158078),linewidth(4pt) + dotstyle); 
label("$F$", (-3.437865772918113,-0.27688534419632627), NE * labelscalefactor); 
dot((-0.5651633926932255,-0.2764813199926565),linewidth(4pt) + dotstyle); 
label("$O$", (-0.4808453206406726,-0.11029264265956915), NE * labelscalefactor); 
dot((1.769673214613549,-3.472962639985313),dotstyle); 
label("$A'$", (1.8514525008739282,-3.2547298841658603), NE * labelscalefactor); 
dot((-4.241058303247535,-1.7450695599165347),linewidth(4pt) + dotstyle); 
label("$G$", (-4.166708842141426,-1.588802868798289), NE * labelscalefactor); 
dot((-2.014213880243746,0.02437045503336205),linewidth(4pt) + dotstyle); 
label("$M$", (-1.8135869329347303,0.2853650234902291), NE * labelscalefactor); 
dot((-1.7768158352132182,-0.7516822995618229),linewidth(4pt) + dotstyle); 
label("$I$", (-1.6886424067821624,-0.5892466595777459), NE * labelscalefactor); 
dot((-6.075046564922025,-1.2178566162970728),linewidth(4pt) + dotstyle); 
label("$K$", (-5.999228559045755,-1.047376588803828), NE * labelscalefactor); 
dot((-4.257045907673084,1.1514396538248008),linewidth(4pt) + dotstyle); 
label("$J$", (-4.166708842141426,1.3265694080949613), NE * labelscalefactor); 
dot((-2.5675883939229163,-0.1449093096982009),linewidth(4pt) + dotstyle); 
label("$T$", (-2.479957739081759,0.01465188349299872), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]

Let $EF$ meet $(AMG)$ at $K$. Notice that
$$\angle AGK=\angle AMK=90^{\circ}=\angle AGA'$$hence $K,G,A'$ are collinear. Let $AK$ meet $(ABC)$ at $J$, then $$KJ\times KA=KG\times KA'=KF\times KE$$Hence $J$ lies on $(AEF)$. Redefine $T$ as the projection of $D$ on $EF$, then
$$\frac{FT}{TE}=\frac{\tan\angle FDT}{\tan\angle TDE}=\frac{\tan\angle BID}{\tan\angle DIC}=\frac{BD}{DC}$$Therefore, $J$ is the center of spiral sim. sending $\overline{FTE}$ to $\overline{BDC}$. So
$$\frac{JF}{JE}=\frac{FB}{EC}=\frac{BD}{DC}=\frac{FT}{TE}$$whichh implies $JT$ is the internal angle bisector of $\angle FJE$, meanwhile since $AF=AE$, $JK$ is the external angle bisector of $\angle FJE$, so $(T,H;F,E)=-1$. Therefore,
$$HF\times HE=HT\times HM\hspace{20pt}(1)$$$$MT\times MH=ME^2\hspace{20pt}(2)$$We now show that $T$ lies on the radical axis of $\Omega_1=(HMG)$ and $\Omega_2=(EFA')$. Indeed, for each point $X$ on the plane define
$$f(X)=Pow(X,\Omega_1)-Pow(X,\Omega_2)$$Then by linearity of PoP,
$$MHf(T)=MTf(H)+HTf(M)=MT\cdot HF\cdot HE-HT\cdot ME^2=MT\cdot HT\cdot HM-HT\cdot MT\cdot MH=0$$as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Number1048576
91 posts
#28 • 1 Y
Y by cubres
hint 1
hint 2
solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bryanguo
1032 posts
#29 • 2 Y
Y by channing421, cubres
Great problem. I believe this works.
[asy]
import olympiad;
unitsize(45);
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -3.4556855291888393, xmax = 7.161644883742675, ymin = -1.975717796255949, ymax = 4.150731345409496;  /* image dimensions */
pen zzwwff = rgb(0.6,0.4,1); pen qqzzff = rgb(0,0.6,1); 

draw((0.7751464073673895,3.3086911070471117)--(0,0)--(4,0)--cycle, linewidth(0.65) + zzwwff); 
 /* draw figures */
draw((0.7751464073673895,3.3086911070471117)--(0,0), linewidth(0.65) + zzwwff); 
draw((0,0)--(4,0), linewidth(0.65) + zzwwff); 
draw((4,0)--(0.7751464073673895,3.3086911070471117), linewidth(0.65) + zzwwff); 
draw(circle((2,1.2765929021365985), 2.3726966594542893), linewidth(0.65) + qqzzff); 
draw(circle((1.3889916156368791,1.1011928091575605), 1.1011928091575605), linewidth(0.65) + qqzzff); 
draw(circle((1.6561974031409439,0.14027251010636455), 1.8064053063692798), linewidth(0.65) + qqzzff); 
draw((0.31682872142499685,1.3523746779608636)--(2.177579263719154,1.8697987707740351), linewidth(0.65)); 
draw((2.177579263719154,1.8697987707740351)--(1.3889916156368791,0), linewidth(0.65)); 
draw((1.3889916156368791,0)--(0.31682872142499685,1.3523746779608636), linewidth(0.65)); 
draw(circle((-0.5115130232317311,2.0364707547989784), 1.8094300525369909), linewidth(0.65) + qqzzff); 
draw((-0.14594123637954498,0.26435496183235674)--(1.2934839092391737,1.909888019820456), linewidth(0.65)); 
draw((1.3889916156368791,0)--(0.9629704469345858,1.5320491096223667), linewidth(0.65)); 
draw((1.3889916156368791,1.1011928091575605)--(-0.0181461969054606,2.524300947194244), linewidth(0.65)); 
draw(circle((1.0820690115021343,2.2049419581023364), 1.1456280673609427), linewidth(0.65) + qqzzff); 
draw((1.3889916156368791,1.1011928091575605)--(3.2248535926326105,-0.7555053027739147), linewidth(0.65)); 
draw((2,-1.0961037573176908)--(-0.0181461969054606,2.524300947194244), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(3.2248535926326105,-0.7555053027739147), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(2,-1.0961037573176908), linewidth(0.65)); 
draw((3.2248535926326105,-0.7555053027739147)--(-1.7981724538308512,0.7642504025508446), linewidth(0.65)); 
draw((-1.7981724538308512,0.7642504025508446)--(0.7751464073673895,3.3086911070471117), linewidth(0.65)); 
draw((-1.7981724538308512,0.7642504025508446)--(0.31682872142499685,1.3523746779608636), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(-0.14594123637954498,0.26435496183235674), linewidth(0.65)); 
draw((-1.7981724538308512,0.7642504025508446)--(1.3889916156368791,1.1011928091575605), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(1.0127252647845169,1.0614144711059215), linewidth(0.65)); 
 /* dots and labels */
dot((0.7751464073673895,3.3086911070471117),dotstyle); 
label("$A$", (0.7995630827824076,3.381460016535215), N * labelscalefactor); 
dot((0,0),dotstyle); 
label("$B$", (0.10138532040368696,-0.1253083835583541), W * labelscalefactor); 
dot((4,0),dotstyle); 
label("$C$", (4.042977334252348,-0.11144763889395265), NE * labelscalefactor); 
dot((1.3889916156368791,1.1011928091575605),linewidth(4pt) + dotstyle); 
label("$I$", (1.4163662203482723,1.1568104978987808), NE * labelscalefactor); 
dot((2,1.2765929021365985),linewidth(4pt) + dotstyle); 
label("$O$", (2.0262389855819363,1.330069806203799), NE * labelscalefactor); 
dot((1.3889916156368791,0),linewidth(4pt) + dotstyle); 
label("$D$", (1.4424106353652614,-0.11837801122615338), E * labelscalefactor); 
dot((2.177579263719154,1.8697987707740351),linewidth(4pt) + dotstyle); 
label("$E$", (2.234150155547958,1.891429965112058), NE * labelscalefactor); 
dot((0.31682872142499685,1.3523746779608636),linewidth(4pt) + dotstyle); 
label("$F$", (0.2659244132029516,1.4478861358512114), NE * labelscalefactor); 
dot((3.2248535926326105,-0.7555053027739147),dotstyle); 
label("$A'$", (3.259845260713666,-0.8737885954360328), NE * labelscalefactor); 
dot((-0.14594123637954498,0.26435496183235674),linewidth(4pt) + dotstyle); 
label("$G$", (-0.2885053733731066,0.1380457650652736), SW * labelscalefactor); 
dot((1.2472039925720753,1.6110867243674494),linewidth(4pt) + dotstyle); 
label("$M$", (1.29854989070086,1.6835187951460362), NE * labelscalefactor); 
dot((1.2934839092391737,1.909888019820456),linewidth(4pt) + dotstyle); 
label("$H$", (1.319341007697462,1.967664060766266), NE * labelscalefactor); 
dot((0.9629704469345858,1.5320491096223667),linewidth(4pt) + dotstyle); 
label("$T$", (0.91737941242982,1.6211454441562296), NE * labelscalefactor); 
dot((-0.0181461969054606,2.524300947194244),linewidth(4pt) + dotstyle); 
label("$R$", (-0.12910680973248986,2.5498153366711276), N * labelscalefactor); 
dot((2,-1.0961037573176908),linewidth(4pt) + dotstyle); 
label("$J$", (1.9915871239209328,-1.1341679567104709), S * labelscalefactor); 
dot((-1.7981724538308512,0.7642504025508446),linewidth(4pt) + dotstyle); 
label("$K$", (-1.8379339884368798,0.6647540623125291), W * labelscalefactor); 
dot((1.0127252647845169,1.0614144711059215),linewidth(4pt) + dotstyle); 
label("$L$", (1.019389313553884,1.1338614601131567), NW * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
 [/asy]
Define $R$ the $A$-Sharky Devil point of $\triangle ABC.$ Let $J$ be the midpoint of $\widehat{BC}$ not containing $A,$ and $K$ is the concurrence point of radical axes on $(AFE), (GFE),$ and $(ABC).$

Note $AMGK$ is then a cyclic quadrilateral with diameter $AK$ since $\angle AMK = \angle AGK = 90^\circ.$ Extend $AT$ to meet $(AMG)$ at $L.$ By Thales Theorem $\angle ALK = 90^\circ.$ From the problem statement, $T$ lies on the radical axis of $(AMG)$ and $(A'EF).$ Therefore $TL \cdot TA = TF \cdot TE,$ and by the converse of Power of a Point, $AFLE$ is cyclic. Since $AI$ is a diameter of $(AFE)$ it follows $\angle ALI = 90^\circ,$ so $K,L,I$ are collinear. It follows $T$ is the orthocenter of $\triangle AIK.$

It follows since $IR \perp AK$ that $I,T,R$ are collinear. By the Sharky-Devil Lemma, $DT \perp EF,$ as required.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
VicKmath7
1390 posts
#30 • 1 Y
Y by cubres
Quite nice config geo.
We begin by applying radical axis to $(A'EF),(AEF),(ABC)$. Let $TI \cap (ABC)=R$, so $AR,EF,GA'$ concur at $P$. Since $\angle AGA'= \angle AMF =90$, we have that $P \in (AMG)$ (and it has diameter $AP$). We want $T\in GH$, which the radical axis of $(A'EF)$ and $(AMG)$, so we want $TF \cdot TE=TM \cdot TP \iff (P,T,F,E)=-1$. But note that $PT \cdot PM=PR \cdot PA= PF \cdot PE$, which is sufficient.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
UI_MathZ_25
116 posts
#31 • 1 Y
Y by cubres
Solution in Spanish
This post has been edited 1 time. Last edited by UI_MathZ_25, Jan 16, 2024, 7:03 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pyramix
419 posts
#32 • 1 Y
Y by cubres
Define $T$ to be the foot of $D$ onto $EF$. We need to show that $T$ has same power w.r.t. circles $(DEF),(AMG),(A'EF)$.

Define $K=MF\cap (AMG)$. Since $AM\perp EF$, we have $\angle AMK=90^\circ$, which means that $K$ is the antipode of $A$ in $(AMG)$. Since $A'$ is also the antipode of $A$ in $(ABC)$, we have $\angle AGK=\angle AGA'=90^\circ$. Hence, $A',K,G$ are collinear.

Claim 1: $(K,T;E,F)=-1\Leftrightarrow T\in HG$.
Proof. \[(K,T;E,F)=-1\Leftrightarrow MT\cdot MK=ME^2\Leftrightarrow TM\cdot TK=TE\cdot TF\]So, $T$ has equal power from circles $(AMG),(DEF)$. However, $T$ also has equal power from circles $(A'EF),(DEF)$ as $T\in EF$ by definition. Hence, $T$ has equal power from all three circles (as required), which means $T\in HG$. $\blacksquare$

Define $S=(AEF)\cap (ABC)$ to be the Sharkydevil Point in $ABC$.

Claim 2: $K,S,A$ are collinear and $A',I,S,T$ collinear.
Proof. Simply note that $K$ lies on the radical axes of circles $(AEF),(A'EF)$ and $(A'EF),(ABC)$ as established. Hence, $K$ lies on the radical axis of $(ABC),(AEF)$, which is line $AS$. So, $K\in AS$.
Note that $\angle ASI=90^\circ=\angle ASA'$, which means $S,I,A'$ are collinear. Invert about the incircle to see that $(ABC)$ goes to ninepoint circle of the intouch triangle and $(AEF)$ goes to line $EF$, which means $S$ goes to $T$. So, $I,S,T$ are collinear as well. $\blacksquare$

Finally, note that taking perspective at $S$ gives $(K,T;E,F)=(A,I;E,F)=-1$, which finishes the problem by Claim 1.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
YaoAOPS
1541 posts
#33 • 2 Y
Y by MS_asdfgzxcvb, cubres
the fish are dying


Let $S$ be the Sharkey-Devil point, so $(ASEFI), (DEF), (GFEA'), (ABC)$ share a radical center $T'$. Since $\measuredangle AGT' = \measuredangle AMT' = 90^\circ$, $T'$ lies on $(AMM')$. We want to show that $T$ lies on the radical axis of $(AMG)$ and $(AEIF)$, or that $TF \cdot TE = TM \cdot TM'$, or that $M'$ is harmonic conjugate of $M$ in $EF$. Then, since $S$ lies on $TI$, and $AS \perp TI, AM \perp MM'$, $T$ is the orthocenter of $\triangle AM'I$. As such, $AT \perp MI$, so the polar of $M'$ wrt the incircle is $AT$ and we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilikeminecraft
656 posts
#34 • 1 Y
Y by cubres
Define $T$ to be the foot from $D$ to $EF.$
Draw in $K,$ the $A$-sharkydevil point.
By Radax on $(AEFI), (EFGA’), (ABC),$ we have that $AK, EF, A’G$ concur at a point $X.$
Since $\angle AGX’ = 180-\angle AGA’ = 90 = \angle AMF = \angle AMX’,$ we have $AMGX’$ is cyclic.
Observe that $-1= (AI;EF) \stackrel K= (X’T;EF).$
It is well known that this implies $TM\cdot TX’ = TE\cdot TF.$
Thus, $T$ is the radical center of $(AEFI), (AMGX’), (DEF),$ which implies $T,G,H$ are collinear.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cj13609517288
1922 posts
#35 • 1 Y
Y by cubres
Full diagram https://www.geogebra.org/calculator/dyrupagm
Diagram without the fluff https://www.geogebra.org/calculator/dszqgp3x

Let $K$ be the $A$-Sharkydevil point. Then radax on $(AGM),(AEF),(A'EF)$ gives that $T$ lies on the line through $A$ and $(AMG)\cap(AEF)$. The inverse of the latter point around the incircle is $(AMG)\cap EF$, let's call it $X$. Then it suffices to show that $XIMK$ are concyclic (since $K$ and $T$ are well known to be inverses). This is equivalent to $\angle XKI=90^\circ$, which is equivalent to $AKX$ collinear. Now redefine $X=AK\cap EF$, we will show that it lies on $(AMG)$. But by radax on $(ABC),(AEF),(A'EF)$ we get that $X$ lies on $GA'$ too. So then $\angle AGX=90^\circ=\angle AMX$, done. $\blacksquare$
This post has been edited 1 time. Last edited by cj13609517288, Apr 24, 2025, 7:57 PM
Z K Y
N Quick Reply
G
H
=
a