We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
An inequality
JK1603JK   3
N a minute ago by lbh_qys
Source: unknown
Let a,b,c>=0: ab+bc+ca=3 then maximize P=\frac{a^2b+b^2c+c^2a+9}{a+b+c}+\frac{abc}{2}.
3 replies
1 viewing
JK1603JK
Yesterday at 10:28 AM
lbh_qys
a minute ago
Find (a,n)
shobber   70
N 2 minutes ago by cherry265
Source: China TST 2006 (1)
Find all positive integer pairs $(a,n)$ such that $\frac{(a+1)^n-a^n}{n}$ is an integer.
70 replies
shobber
Mar 24, 2006
cherry265
2 minutes ago
FE with 2 degrees
Adywastaken   2
N 4 minutes ago by Adywastaken
Source: Serbia 2021/5
Find all $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $f(xf(y)+x^2+y)=f(x)f(y)+xf(x)+f(y) \forall x,y \in \mathbb{R}$
2 replies
Adywastaken
Yesterday at 12:29 PM
Adywastaken
4 minutes ago
Inspired by my own results
sqing   1
N 28 minutes ago by sqing
Source: Own
Let $ a,b,c\geq 2.$ Prove that
$$ (a+1)(b+2)(c +1)-3 abc\leq 12$$$$ (a+1)(b+2)(c +1)-\frac{7}{2}abc\leq  8$$$$ (a+1)(b+3)(c +1)-\frac{15}{4}abc\leq  15$$$$ (a+1)(b+3)(c +1)-4abc\leq  13$$
1 reply
sqing
37 minutes ago
sqing
28 minutes ago
keep one card and discard the other
Scilyse   2
N 34 minutes ago by flower417477
Source: CGMO 2024 P2
There are $8$ cards on which the numbers $1$, $2$, $\dots$, $8$ are written respectively. Alice and Bob play the following game: in each turn, Alice gives two cards to Bob, who must keep one card and discard the other. The game proceeds for four turns in total; in the first two turns, Bob cannot keep both of the cards with the larger numbers, and in the last two turns, Bob also cannot keep both of the cards with the larger numbers. Let $S$ be the sum of the numbers written on the cards that Bob keeps. Find the greatest positive integer $N$ for which Bob can guarantee that $S$ is at least $N$.
2 replies
Scilyse
Jan 28, 2025
flower417477
34 minutes ago
JBMO Shortlist 2020 N4
Lukaluce   6
N 34 minutes ago by Assassino9931
Source: JBMO Shortlist 2020
Find all prime numbers $p$ such that

$(x + y)^{19} - x^{19} - y^{19}$

is a multiple of $p$ for any positive integers $x$, $y$.
6 replies
Lukaluce
Jul 4, 2021
Assassino9931
34 minutes ago
Existence in number theory
shangyang   5
N an hour ago by shanelin-sigma
Prove that there are infinitely many integers can't be written as $$\frac{p^a-p^b}{p^c-p^d}$$, with a,b,c,d are arbitrary integers and p is an arbitrary prime such that the fraction is an integer too.
5 replies
shangyang
Nov 26, 2021
shanelin-sigma
an hour ago
Interesting inequality
sqing   1
N an hour ago by sqing
Source: Own
Let $ a,b,c\geq 2.$ Prove that
$$ (a+1)(b+1)(c +1)-\frac{9}{4}abc\leq 9$$$$ (a+2)(b+2)(c +2)-4 abc\leq 32$$$$ (a+2)(b+2)(c +2)-\frac{17}{4}a b c\leq 30$$$$ (a+1)(b+1)(c +1)-\frac{23}{10}abc\leq\frac{43}{5}$$
1 reply
sqing
3 hours ago
sqing
an hour ago
All Russian Olympiad 2018 Day1 P2
Davrbek   23
N 2 hours ago by Marcus_Zhang
Source: Grade 11 P2
Let $n\geq 2$ and $x_{1},x_{2},\ldots,x_{n}$ positive real numbers. Prove that
\[\frac{1+x_{1}^2}{1+x_{1}x_{2}}+\frac{1+x_{2}^2}{1+x_{2}x_{3}}+\cdots+\frac{1+x_{n}^2}{1+x_{n}x_{1}}\geq n.\]
23 replies
Davrbek
Apr 28, 2018
Marcus_Zhang
2 hours ago
Interesting inequality
sqing   1
N 2 hours ago by sqing
Source: Own
Let $ a,b,c\geq \frac{1}{3}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq 17+2\sqrt{73}$$Let $ a,b,c\geq \frac{1}{2}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq \frac{469+115\sqrt{17}}{32}$$Let $ a,b,c\geq \frac{1}{5}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq \frac{569+34\sqrt{281}}{25}$$
1 reply
sqing
2 hours ago
sqing
2 hours ago
True Generalization of 2023 CGMO T7
EthanWYX2009   0
2 hours ago
Source: aops.com/community/c6h3132846p28384612
Given positive integer $n.$ Let $x_1,\ldots ,x_n\ge 0$ and $x_1x_2\cdots x_n\le 1.$ Show that
\[\sum_{k=1}^n\frac{1}{1+\sum_{j\neq k}x_j}\le\frac n{1+(n-1)\sqrt[n]{x_1x_2\cdots x_n}}.\]
0 replies
1 viewing
EthanWYX2009
2 hours ago
0 replies
Not homogenous, messy inequality
Kimchiks926   10
N 2 hours ago by Marcus_Zhang
Source: Latvian TST for Baltic Way 2019 Problem 1
Prove that for all positive real numbers $a, b, c$ with $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} =1$ the following inequality holds:
$$3(ab+bc+ca)+\frac{9}{a+b+c} \le \frac{9abc}{a+b+c} + 2(a^2+b^2+c^2)+1$$
10 replies
Kimchiks926
May 29, 2020
Marcus_Zhang
2 hours ago
USA 97 [1/(b^3+c^3+abc) + ... >= 1/(abc)]
Maverick   45
N 4 hours ago by Marcus_Zhang
Source: USAMO 1997/5; also: ineq E2.37 in Book: Inegalitati; Authors:L.Panaitopol,V. Bandila,M.Lascu
Prove that, for all positive real numbers $ a$, $ b$, $ c$, the inequality
\[ \frac {1}{a^3 + b^3 + abc} + \frac {1}{b^3 + c^3 + abc} + \frac {1}{c^3 + a^3 + abc} \leq \frac {1}{abc}
\]
holds.
45 replies
Maverick
Sep 12, 2003
Marcus_Zhang
4 hours ago
The prime inequality learning problem
orl   137
N 4 hours ago by Marcus_Zhang
Source: IMO 1995, Problem 2, Day 1, IMO Shortlist 1995, A1
Let $ a$, $ b$, $ c$ be positive real numbers such that $ abc = 1$. Prove that
\[ \frac {1}{a^{3}\left(b + c\right)} + \frac {1}{b^{3}\left(c + a\right)} + \frac {1}{c^{3}\left(a + b\right)}\geq \frac {3}{2}.
\]
137 replies
orl
Nov 9, 2005
Marcus_Zhang
4 hours ago
Perpendicularity with Incircle Chord
tastymath75025   29
N Mar 19, 2025 by YaoAOPS
Source: 2019 ELMO Shortlist G3
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Proposed by Ankit Bisain
29 replies
tastymath75025
Jun 27, 2019
YaoAOPS
Mar 19, 2025
Perpendicularity with Incircle Chord
G H J
G H BBookmark kLocked kLocked NReply
Source: 2019 ELMO Shortlist G3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tastymath75025
3223 posts
#1 • 6 Y
Y by amar_04, GeoMetrix, itslumi, tiendung2006, Adventure10, Mango247
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Proposed by Ankit Bisain
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rocketscience
466 posts
#2 • 5 Y
Y by XianYing-Li, Muaaz.SY, Adventure10, Mango247, MS_asdfgzxcvb
Define $T$ instead as the foot to $EF$ from $D$; we wish to show $T \in GH$. Let $(AI)$ meet $(ABC)$ a second time at a point $T'$ so that $I, T, T'$ are collinear, say by inversion about the incircle. By radical axis on $(AI), (ABC), (A'EFG)$ we get a point $X = AT' \cap EF \cap A'G$. Since $\angle XGA = \angle XMA = 90^{\circ}$, point $X$ lies on $(AMG)$.

Now note that
\[-1 = (A, I; E, F) \stackrel{T'}{=} (X, T; E, F),\]so by properties of harmonic divisions we have $TM \cdot TX = TE \cdot TF$. This implies that $T$ lies on the radical axis of $(AMG)$ and $(A'EFG)$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wizard_32
1566 posts
#3 • 3 Y
Y by Ramisoka, Adventure10, Mango247
This is a really rich configuration!
tastymath75025 wrote:
Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.

Proposed by Ankit Bisain
Let $X=(AMG) \cap AT.$ Since $T$ lies on the radical axis of $(AMG),(EFG),$ hence power of a point gives $X \in (AFE).$ Define $Y=(AEF) \cap (ABC).$ Clearly $\measuredangle IYA=\pi/2=\measuredangle A'YA,$ and so $Y \in A'I.$

Now define $P$ to be the radical center of $(AEF), (FEG), (ABC).$ Hence $P$ lies on $AY,EF$ and $GA'.$

Key Claim: $I,T$ and $Y$ are collinear.
Proof: We have $$\measuredangle PMA=\pi/2=\measuredangle A'GA=\measuredangle PGA$$so $P \in (AMG).$
Further, we get $\measuredangle PXA=\pi/2=\measuredangle IXA$ and so $I,X,P$ are also collinear. $\square$

Since $AT \perp PI, PT \perp AI,$ hence $T$ is the orthocenter of $\triangle API.$ Hence $IT \perp AP$ which implies that $T, I, Y$ are collinear.
Notice that the power of $I$ with respect to $(AMP)$ is $ $ $IM \cdot IA=r^2,$ where $r$ is the inradius of $ABC.$

So inverting about the incircle of $\triangle ABC,$ we find that $T=AX \cap FE \mapsto (IMP) \cap (IEF)=Y.$ But $Y \in (ABC),$ which is the image of the nine-point circle of $DEF$ under this inversion. So $T$ must be the foot of the perpendicular from $D,$ and so we are done. $\blacksquare$
[asy]
  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -14.261007052484016, xmax = 13.427339353659017, ymin = -10.769656125630911, ymax = 7.171127796903298;  /* image dimensions */
pen zzttff = rgb(0.6,0.2,1); pen ccqqqq = rgb(0.2,0,0); 

draw((-3.6121766694775372,3.8402861529741235)--(-5.87,-5.79)--(6.97,-5.67)--cycle, linewidth(0) + ccqqqq); 
 /* draw figures */
draw(circle((0.5170807117156297,-2.207636153572406), 7.323123018641797), linewidth(0.2) + blue); 
draw(circle((-1.649252980059181,-2.412125033326211), 3.338282946745299), linewidth(0.4) + blue); 
draw(circle((-0.6253105070707227,-5.673642231754901), 5.869971922586647), linewidth(0.2)); 
draw((-4.899405335760015,-1.6501258881411427)--(0.5821675789741579,0.07079569059024113), linewidth(0.4)); 
draw((-1.649252980059181,-2.412125033326211)--(-3.6121766694775372,3.8402861529741235), linewidth(0.4)); 
draw(circle((-6.943377279563433,0.2513213626910499), 4.896689266282706), linewidth(0.4) + zzttff); 
draw(circle((-2.6307148247683596,0.7140805598239562), 3.2766490143534344), linewidth(0.4) + linetype("4 4")); 
draw((-10.274577889649324,-3.3376434275920284)--(-4.899405335760015,-1.6501258881411427), linewidth(0.4)); 
draw((-2.052141797423591,0.020277581592099976)--(-6.399034138217151,-4.615017745406283), linewidth(0.4)); 
draw((-3.084191616558338,-1.0802455804311601)--(-1.6180554364422242,-5.750262200340581), linewidth(0.4)); 
draw((-10.274577889649324,-3.3376434275920284)--(4.646338092908797,-8.255558460118936), linewidth(0.4) + linetype("4 4")); 
draw((-3.6121766694775372,3.8402861529741235)--(4.646338092908797,-8.255558460118936), linewidth(0.2)); 
draw((-4.899405335760015,-1.6501258881411427)--(-1.6180554364422242,-5.750262200340581), linewidth(0.2)); 
draw((-1.6180554364422242,-5.750262200340581)--(0.5821675789741579,0.07079569059024113), linewidth(0.2)); 
draw((-5.821271838735171,1.460253933705996)--(4.646338092908797,-8.255558460118936), linewidth(0.4) + linetype("4 4")); 
draw((-2.926570903626123,-2.549184361059153)--(-3.6121766694775372,3.8402861529741235), linewidth(0.4)); 
draw((-3.6121766694775372,3.8402861529741235)--(-10.274577889649324,-3.3376434275920284), linewidth(0.4)); 
draw((-10.274577889649324,-3.3376434275920284)--(-1.649252980059181,-2.412125033326211), linewidth(0.4) + linetype("4 4")); 
 /* dots and labels */
dot((-3.6121766694775372,3.8402861529741235),dotstyle); 
label("$A$", (-3.9338597725524567,4.352238105697483), NE * labelscalefactor); 
dot((-5.87,-5.79),dotstyle); 
label("$B$", (-6.252198957843215,-6.396425389741515), NE * labelscalefactor); 
dot((6.97,-5.67),dotstyle); 
label("$C$", (7.183630411455497,-6.317391099333876), NE * labelscalefactor); 
dot((0.5170807117156297,-2.207636153572406),linewidth(4pt) + dotstyle); 
label("$O$", (0.6237843076214202,-1.9968498903829057), NE * labelscalefactor); 
dot((-1.649252980059181,-2.412125033326211),linewidth(4pt) + dotstyle); 
label("$I$", (-1.5628310603232722,-3.0769851926206484), NE * labelscalefactor); 
dot((-1.6180554364422242,-5.750262200340581),linewidth(4pt) + dotstyle); 
label("$D$", (-1.4047624795079932,-6.264701572395449), NE * labelscalefactor); 
dot((0.5821675789741579,0.07079569059024113),linewidth(4pt) + dotstyle); 
label("$E$", (0.6764738345598466,0.26879976796943206), NE * labelscalefactor); 
dot((-4.899405335760015,-1.6501258881411427),linewidth(4pt) + dotstyle); 
label("$F$", (-5.646269398051312,-1.7070574922215602), NE * labelscalefactor); 
dot((4.646338092908797,-8.255558460118936),linewidth(4pt) + dotstyle); 
label("$A'$", (4.575498828003394,-8.899177919316772), NE * labelscalefactor); 
dot((-6.399034138217151,-4.615017745406283),linewidth(4pt) + dotstyle); 
label("$G$", (-7.068886625388823,-5.237255797096133), NE * labelscalefactor); 
dot((-2.1586188783929288,-0.789665098775451),linewidth(4pt) + dotstyle); 
label("$M$", (-2.063381566238322,-0.5742326630453913), NE * labelscalefactor); 
dot((-2.926570903626123,-2.549184361059153),linewidth(4pt) + dotstyle); 
label("$X$", (-2.985448287660783,-3.1033299560898615), NE * labelscalefactor); 
dot((-10.274577889649324,-3.3376434275920284),linewidth(4pt) + dotstyle); 
label("$P$", (-10.54639540332496,-4.078086204450751), NE * labelscalefactor); 
dot((-5.821271838735171,1.460253933705996),linewidth(4pt) + dotstyle); 
label("$Y$", (-6.331233248250855,1.5860379414300936), NE * labelscalefactor); 
dot((-2.052141797423591,0.020277581592099976),linewidth(4pt) + dotstyle); 
label("$H$", (-1.9580025123614697,0.2424550045002188), NE * labelscalefactor); 
dot((-3.084191616558338,-1.0802455804311601),linewidth(4pt) + dotstyle); 
label("$T$", (-3.0644825780684224,-0.6796117169222443), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
This post has been edited 1 time. Last edited by Wizard_32, Jul 4, 2019, 3:26 AM
Reason: Undefined variable.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Flash_Sloth
230 posts
#4 • 3 Y
Y by Adventure10, Mango247, Radin.AmirAslani
Let $N$ be the middle of the arc $BC$.
Claim1: The intersection of $A'I$ and $ND$ lies on $\odot O$.
Proof: Let $J = ND \cap \odot O$, then $ND \cdot NJ = NC^2 = NI^2$, thus $\triangle NID \sim \triangle NJI$. Hence
\[\angle IJN = \angle NID = 90^\circ - (\angle B + \frac{1}{2} \angle A) =90^\circ - \angle NBA = 90^\circ - \angle NA'A = \angle A'AN = \angle A'JN \]Therefore, $A',I,J$ are collinear.
Claim 2: Let $T = A'J \cap EF$, then $DT \perp EF$.
Proof: Since $90^\circ = \angle IJA = \angle IMT$, we have $IT \cdot IJ = IM \cdot IA = r^2 = ID^2$. Therefore,
\[ \angle TDI = \angle IJD =\angle NID\]implying that $DT \parallel NI$, hence $DT \perp EF$.
Claim 3: $AJ$, $EF$, $A'G$ are concurrent, denote the intersection by $L$.
Proof: Application of radical axis theorem to $\odot O$, $\odot (AEFIJ)$ and $\odot(A'EFG)$.
Claim 4: $L,G,M,A$ are concyclic; $L,I,M,J$ are concyclic.
Proof: Since $\angle AML =\angle AGL=90^\circ$ and $\angle IML=\angle IJL =90^\circ$ as well.
Finally, $MT \cdot TL = IT \cdot TJ = FT \cdot TE$, meaning that $T$ lies on the radical axis of $\odot(AMLG)$ and $\odot(A'EFG)$, which is $HG$.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jbaca
225 posts
#5 • 3 Y
Y by translate, Adventure10, Mango247
Solution. Redefine $T$ as the $D$-foot of altitude in $\bigtriangleup DEF$. It's not hard to show that $T,\ I$ and $A'$ are collinear. Redefine also $H$ as $\overline{GT}\cap (A'EF)$, $G\neq H$, so it suffices to show that $A,\ H,\ M$ and $G$ are concyclic.
Let $R=\overline{A'I}\cap (ABC),\ R\neq A'$. Clearly, it lies on $(AEF)$. By the radical axis theorem, $AR,\ EF$ and $GA'$ concur at a point, say $P$. Moreover, being $\angle AMP=\angle AGP=90^\circ$, we infer that $AMGP$ is cyclic. Because $\angle TMI=\angle ART=90^\circ$, we get
$$PT\cdot PM=PR\cdot PA=PF\cdot PE$$which gives us that $(P,T;F,E)=-1$, implying the following equality
$$PT\cdot TM=FT\cdot TE=GT\cdot TH$$thus $H$ lies on $(PGM)$ and then it lies on $(AMG)$ as well, as required. $\blacksquare$
This post has been edited 1 time. Last edited by jbaca, Jun 30, 2019, 4:32 AM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#6 • 3 Y
Y by AlastorMoody, mueller.25, amar_04
Here i present a solution that I,mueller.25,amar_04 found.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -24.620625249953825, xmax = 27.856252010786847, ymin = -16.24019088506529, ymax = 18.41499364361862;  /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wvvxds = rgb(0.396078431372549,0.3411764705882353,0.8235294117647058); pen ffqqff = rgb(1,0,1); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen qqffff = rgb(0,1,1); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen dbwrru = rgb(0.8588235294117647,0.3803921568627451,0.0784313725490196); 
 /* draw figures */
draw((-3.527646662682087,13.712520226747058)--(-7.26,-4.11), linewidth(0.4) + rvwvcq); 
draw((-7.26,-4.11)--(13.395645203182287,-4.419894946997829), linewidth(0.4) + rvwvcq); 
draw((13.395645203182287,-4.419894946997829)--(-3.527646662682087,13.712520226747058), linewidth(0.4) + rvwvcq); 
draw(circle((-0.14166328775828607,1.5839579345872608), 5.800101026607598), linewidth(0.4) + wvvxds); 
draw((-5.818616292086269,2.7728130584379342)--(-0.14166328775828446,1.5839579345872612), linewidth(0.4) + ffqqff); 
draw((-0.14166328775828446,1.5839579345872612)--(4.098565608016035,5.541435771580792), linewidth(0.4) + green); 
draw((-0.14166328775828446,1.5839579345872612)--(-0.22867193493617494,-4.2154904369538455), linewidth(0.4) + wrwrwr); 
draw(circle((3.176913954878332,3.006394992923919), 12.632191044978963), linewidth(0.4)); 
draw((-3.527646662682087,13.712520226747058)--(9.88147457243875,-7.699730240899219), linewidth(0.4) + qqffff); 
draw((-5.818616292086269,2.7728130584379342)--(4.098565608016035,5.541435771580792), linewidth(0.4) + linetype("2 2") + wvvxds); 
draw(circle((1.2960492996280217,-3.5659157486317214), 9.528795798604248), linewidth(0.4) + dtsfsf); 
draw(circle((-9.961397440505575,6.766318481782098), 9.467991748670812), linewidth(0.4) + dtsfsf); 
draw((-0.5445625005599162,5.78342099642709)--(-8.17647769874491,-2.531903351900492), linewidth(0.4) + ffqqff); 
draw((-2.442737265572527,3.7152718581028)--(-0.22867193493617494,-4.2154904369538455), linewidth(0.4) + qqffff); 
draw((-0.14166328775828446,1.5839579345872612)--(-5.12964304175612,-1.3759795466042293), linewidth(0.4) + green); 
draw((-0.14166328775828446,1.5839579345872612)--(-0.5128097549578929,7.372172013104032), linewidth(0.4) + wrwrwr); 
draw((-5.12964304175612,-1.3759795466042293)--(-0.5128097549578929,7.372172013104032), linewidth(0.4) + ffqqff); 
draw((-3.527646662682087,13.712520226747058)--(-0.14166328775828446,1.5839579345872612), linewidth(0.4) + wrwrwr); 
draw((9.88147457243875,-7.699730240899219)--(-2.442737265572527,3.7152718581028), linewidth(0.4) + blue); 
draw((-16.395148218329062,-0.17988326318285885)--(-3.527646662682087,13.712520226747058), linewidth(0.4) + linetype("4 4") + wvvxds); 
draw(circle((-1.8346549752201853,7.64823908066716), 6.296167617885918), linewidth(0.4)); 
draw((-5.818616292086269,2.7728130584379342)--(-0.5128097549578929,7.372172013104032), linewidth(0.4) + wrwrwr); 
draw((-0.5128097549578929,7.372172013104032)--(4.098565608016035,5.541435771580792), linewidth(0.4) + wrwrwr); 
draw((-8.010663903216715,8.872428769327545)--(-5.818616292086269,2.7728130584379342), linewidth(0.4) + blue); 
draw((-8.010663903216715,8.872428769327545)--(4.098565608016035,5.541435771580792), linewidth(0.4) + blue); 
draw((-16.395148218329062,-0.17988326318285885)--(9.88147457243875,-7.699730240899219), linewidth(0.4) + linetype("4 4") + wvvxds); 
draw((-3.527646662682087,13.712520226747058)--(-8.17647769874491,-2.531903351900492), linewidth(0.4) + ffqqff); 
draw((-5.818616292086269,2.7728130584379342)--(-0.22867193493617494,-4.2154904369538455), linewidth(0.4) + dbwrru); 
draw((-0.22867193493617494,-4.2154904369538455)--(4.098565608016035,5.541435771580792), linewidth(0.4) + dbwrru); 
draw((-8.010663903216715,8.872428769327545)--(-2.442737265572527,3.7152718581028), linewidth(0.4) + blue); 
draw((-16.395148218329062,-0.17988326318285885)--(-5.818616292086269,2.7728130584379342), linewidth(0.4) + linetype("4 4") + wvvxds); 
 /* dots and labels */
dot((-3.527646662682087,13.712520226747058),dotstyle); 
label("$A$", (-3.391343085381462,14.053279169998621), NE * labelscalefactor); 
dot((-7.26,-4.11),dotstyle); 
label("$B$", (-7.139691461148653,-3.768413562058098), NE * labelscalefactor); 
dot((13.395645203182287,-4.419894946997829),dotstyle); 
label("$C$", (13.71475586584699,-4.722538603162473), NE * labelscalefactor); 
dot((-0.14166328775828446,1.5839579345872612),linewidth(4pt) + dotstyle); 
label("$I$", (-0.017829547190990128,1.8541090015926833), NE * labelscalefactor); 
dot((-0.22867193493617494,-4.2154904369538455),linewidth(4pt) + dotstyle); 
label("$D$", (-0.08598133584130269,-3.9387930336838792), NE * labelscalefactor); 
dot((4.098565608016035,5.541435771580792),linewidth(4pt) + dotstyle); 
label("$E$", (4.2416572434535444,5.806912743310808), NE * labelscalefactor); 
dot((-5.818616292086269,2.7728130584379342),linewidth(4pt) + dotstyle); 
label("$F$", (-5.6744280051669325,3.046765302973152), NE * labelscalefactor); 
dot((3.1769139548783314,3.0063949929239193),linewidth(4pt) + dotstyle); 
label("$O$", (3.3216080966743253,3.2852965632492457), NE * labelscalefactor); 
dot((9.88147457243875,-7.699730240899219),dotstyle); 
label("$A'$", (10.034559278730113,-7.346382466199505), NE * labelscalefactor); 
dot((-8.17647769874491,-2.531903351900492),linewidth(4pt) + dotstyle); 
label("$G$", (-8.025664713602715,-2.269074211751223), NE * labelscalefactor); 
dot((-0.8600253420351174,4.157124415009363),linewidth(4pt) + dotstyle); 
label("$M$", (-0.733423328019272,4.443876970304559), NE * labelscalefactor); 
dot((-0.5445625005599162,5.78342099642709),linewidth(4pt) + dotstyle); 
label("$H$", (-0.3926643847677092,6.045444003586902), NE * labelscalefactor); 
dot((-2.442737265572527,3.7152718581028),linewidth(4pt) + dotstyle); 
label("$T$", (-2.3009144669764607,4.000890344077527), NE * labelscalefactor); 
dot((-5.12964304175612,-1.3759795466042293),linewidth(4pt) + dotstyle); 
label("$K$", (-4.992910118663807,-1.1104938046959105), NE * labelscalefactor); 
dot((-0.5128097549578929,7.372172013104032),linewidth(4pt) + dotstyle); 
label("$L$", (-0.3926643847677092,7.647011036869246), NE * labelscalefactor); 
dot((-16.395148218329062,-0.17988326318285885),linewidth(4pt) + dotstyle); 
label("$T'$", (-16.272031140290537,0.08216249668455824), NE * labelscalefactor); 
dot((-8.010663903216715,8.872428769327545),linewidth(4pt) + dotstyle); 
label("$J$", (-7.889361136302091,9.14635038717612), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

Proof: Let $J=A'I \cap \odot(ABC)$. Notice that it is sufficient to show that if $T$ is the foot of the altitude from $D$ onto $EF$ then $T \in$ radical axis of $\odot(AMG)$ and $\odot(A'EF)$. Now we state a lemma.

Claim: If $AJ \cap EF=T'$ then $T'$ is the harmonic conjugate of $T$ w.r.t $EF$.

Proof: Firstly it's a well known fact that $\overline{(I,T,J)}$ is a collinear triple (see here ) Notice that since $\overline{IE}=\overline{IF} \implies \angle FJI=\angle IJE$. But also notice that $\angle TJT'=90^\circ$ $\implies$ $(T,T';F,E)=-1$. Done $\square$.

Now back to the main problem. Firstly notice that by radical axis theorem on $\odot(ABC),\odot(AEF),\odot(A'EF) \implies AJ,EF,A'G$ are concurrent. So we could define $T'=EF \cap A'G$. But notice that $\angle AMT'=90^\circ$ and also $\angle AGT'=90^\circ$ $\implies$ $T' \in \odot(AMG)$. But now finally notice that $$\text{Pow}_{\odot(A'FE)}{T}=\overline{TF} \cdot \overline{TE}=\overline{TT'} \cdot \overline{TM}=\text{Pow}_{\odot(AMG)}{T}$$where the last part follows from the claim. This immediately implies $T \in $ radical axis of $\odot(A'FE)$ and $\odot(AMG)$ as desired $\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#7
Y by
Comparing to imo problems ,what level is this.Can anyone give his opinion.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AmirKhusrau
230 posts
#8
Y by
Maxito12345 wrote:
Comparing to imo problems ,what level is this.Can anyone give his opinion.

I would say $\leq$ G4. Actually this is quite a well known configuration now (just a mix of well known lemmas), so it is easy to most of the people.

@below Hmm maybe.
This post has been edited 2 times. Last edited by AmirKhusrau, May 13, 2020, 11:58 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#9 • 1 Y
Y by Mango247
AmirKhusrau wrote:
Maxito12345 wrote:
Comparing to imo problems ,what level is this.Can anyone give his opinion.

I would say $\leq$ G4. Actually this is quite a well known configuration now (just a mix of well known lemmas), so it is easy to most of the people.

Could it be a p2 (like the one of imo 2019)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathematicsislovely
245 posts
#10
Y by
Let circumcircle of $AEF$ cut $(ABC)$ at $R$.

Claim:$AR,BG,EF$ concur at a point.
proof: Radical axis theorem on $(ARFE),(EFA'),(ABC)$ shows that these 3 lines are concurrent.Let this point of concurrency be $S$.$\blacksquare$

Claim:$S$ lies on $AMG$
proof: $\angle AMS= \angle AGS=90^\circ$$\blacksquare$

Now observe that,$ST.TM=GT.TH=FT.TE$. As $M$ is the midpoint of $EF$ we have $(S,T;F,,E)=-1$.[It can be seen considering a circle with diameter $EF$ and centre $M$ then under inversion in this circle $S,T$ swaps, as $ST.TM=FT.TE$].So we have $ST.SM=SF.SE$.From this we get the ninepoint circle of $DEF$ cut $EF$ in $T$ except $M$.So $DT\perp EF$$\blacksquare$
This post has been edited 1 time. Last edited by Mathematicsislovely, May 13, 2020, 12:59 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#11
Y by
Maxito12345 wrote:
AmirKhusrau wrote:
Maxito12345 wrote:
Comparing to imo problems ,what level is this.Can anyone give his opinion.

I would say $\leq$ G4. Actually this is quite a well known configuration now (just a mix of well known lemmas), so it is easy to most of the people.

Could it be a p2 (like the one of imo 2019)

?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
khina
993 posts
#12
Y by
i think its a medium problem, so sure.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#13
Y by
Mr Evan chen ,how many mohs?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxito12345
83 posts
#14
Y by
bump????
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathlogician
1051 posts
#15
Y by
My solution is the same as probably half of this thread, but whatever.

Let $T'$ be the foot of the perpendicular from $D$ to $EF$. Let $R = EF \cap (AMG)$, and let $Q = (AEIF) \cap (ABC)$. It suffices to show that $G,T',H$ are collinear, or by radical axes and harmonic bundles it suffices to show that $(E,F;R,T') = -1$.

Claim: $Q,T',I$ collinear.

Proof: We invert around the incircle. let $Q'$ be the intersection of $T'I$ with $(ABC)$. Note that after the inversion, $Q'$ gets sent to the intersection of line $EF$ with the nine-point circle of $(DEF)$, so $T'$ and $Q'$ are inverses. Now $\angle AQ'I = \angle AMT' = 90$, so $Q=Q'$.

Now, note that $\angle RGA + \angle AGA' = 90+90=180$, so $R,G,A'$ are collinear. Moreover, by radical axes on $(AEIF), (A'GFE), (ABA'C)$ we find that $A,Q,R$ are collinear. Now, $(E,F;R,T') \stackrel{Q}{=} (E,F;A,I) = -1$, which is what we wanted.
This post has been edited 2 times. Last edited by mathlogician, Feb 22, 2021, 5:09 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anyone__42
92 posts
#17
Y by
check this https://artofproblemsolving.com/community/c946900h1911664_properties_of_the_sharkydevil_point
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Dr_Vex
562 posts
#18
Y by
LeTs SpAm
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -8.342636385018698, xmax = 22.10453829563805, ymin = -19.202391801926474, ymax = 9.571861192979963;  /* image dimensions */
pen ttqqqq = rgb(0.2,0,0); pen wvvxds = rgb(0.396078431372549,0.3411764705882353,0.8235294117647058); pen wwccff = rgb(0.4,0.8,1); pen ttffcc = rgb(0.2,1,0.8); pen ccwwff = rgb(0.8,0.4,1); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((0.36318383958057093,4.154887985795261)--(-0.6571422088705283,-5.117548735216507), linewidth(0.7) + ttqqqq); 
draw((-0.6571422088705283,-5.117548735216507)--(8.68,-4.66), linewidth(0.7) + ttqqqq); 
draw((8.68,-4.66)--(0.36318383958057093,4.154887985795261), linewidth(0.7) + ttqqqq); 
draw(circle((2.4809144209628675,-2.1642204929126425), 2.796198553868902), linewidth(0.7) + wvvxds); 
draw(circle((3.8168243046372794,-0.9175018011374343), 6.136511273717033), linewidth(0.7) + wvvxds); 
draw(circle((1.4220491302717195,0.9953337464413093), 3.3322632992082095), linewidth(0.7) + wvvxds); 
draw((0.36318383958057093,4.154887985795261)--(7.270464769693989,-5.98989158807013), linewidth(0.7) + wwccff); 
draw(circle((3.228685230098349,-4.395498047486284), 4.344890402409415), linewidth(0.7) + wvvxds); 
draw((-0.2985074562530282,-1.858376772832902)--(4.514749641394138,-0.2453039629948295), linewidth(0.7) + ttffcc); 
draw((4.514749641394138,-0.2453039629948295)--(2.617772544652193,-4.957067822545749), linewidth(0.7) + ttffcc); 
draw((2.617772544652193,-4.957067822545749)--(-0.2985074562530282,-1.858376772832902), linewidth(0.7) + ttffcc); 
draw(circle((-2.7952970494669476,0.2006267586689261), 5.060848088891136), linewidth(0.7) + wvvxds); 
draw((1.389697180979825,-1.2926066627978439)--(2.617772544652193,-4.957067822545749), linewidth(0.7) + ccwwff); 
draw((2.2525659983910864,-0.16167426106806954)--(-1.112606871601543,-4.572290289023016), linewidth(0.7) + wrwrwr); 
draw((-1.8933890982991697,1.329770657951845)--(7.270464769693989,-5.98989158807013), linewidth(0.7) + linetype("4 4") + ccwwff); 
draw((-1.8933890982991697,1.329770657951845)--(4.11717186677921,-7.0466585093944225), linewidth(0.7) + ccwwff); 
draw((0.36318383958057093,4.154887985795261)--(4.11717186677921,-7.0466585093944225), linewidth(0.7) + ccwwff); 
draw((-5.953777845649177,-3.7536345426339013)--(0.36318383958057093,4.154887985795261), linewidth(0.7) + wwccff); 
draw((-5.953777845649177,-3.7536345426339013)--(-0.2985074562530282,-1.858376772832902), linewidth(0.7) + wwccff); 
draw((-5.953777845649177,-3.7536345426339013)--(7.270464769693989,-5.98989158807013), linewidth(0.7) + wwccff); 
draw((0.36318383958057093,4.154887985795261)--(-1.112606871601543,-4.572290289023016), linewidth(0.7) + ccwwff); 
 /* dots and labels */
dot((0.36318383958057093,4.154887985795261),dotstyle); 
label("$A$", (0.49039011574325947,4.486179268298825), NE * labelscalefactor); 
dot((-0.6571422088705283,-5.117548735216507),dotstyle); 
label("$B$", (-0.513362895706963,-4.781806870758248), NE * labelscalefactor); 
dot((8.68,-4.66),dotstyle); 
label("$C$", (8.821540110780106,-4.313388798748144), NE * labelscalefactor); 
dot((2.4809144209628675,-2.1642204929126425),linewidth(4pt) + dotstyle); 
label("$I$", (2.5982714397887268,-1.9043815712676047), NE * labelscalefactor); 
dot((2.617772544652193,-4.957067822545749),linewidth(4pt) + dotstyle); 
label("$D$", (2.765563608363764,-4.681431569613226), NE * labelscalefactor); 
dot((4.514749641394138,-0.2453039629948295),linewidth(4pt) + dotstyle); 
label("$E$", (4.6392358964041795,0.036207584202829476), NE * labelscalefactor); 
dot((-0.2985074562530282,-1.858376772832902),linewidth(4pt) + dotstyle); 
label("$F$", (-0.1787785585568889,-1.6032556678325374), NE * labelscalefactor); 
dot((3.8168243046372794,-0.9175018011374337),linewidth(4pt) + dotstyle); 
label("$O$", (3.9366087883890235,-0.6664195238123277), NE * labelscalefactor); 
dot((7.270464769693989,-5.98989158807013),linewidth(4pt) + dotstyle); 
label("$A'$", (7.4162858947497945,-5.718643014778459), NE * labelscalefactor); 
dot((-1.112606871601543,-4.572290289023016),linewidth(4pt) + dotstyle); 
label("$G$", (-0.9817809677170669,-4.313388798748144), NE * labelscalefactor); 
dot((2.108121092570555,-1.0518403679138657),linewidth(4pt) + dotstyle); 
label("$M$", (2.397520837498682,-0.7667948249573502), NE * labelscalefactor); 
dot((2.2525659983910864,-0.16167426106806954),linewidth(4pt) + dotstyle); 
label("$H$", (1.7618105969135414,0.13658288534785193), NE * labelscalefactor); 
dot((1.389697180979825,-1.2926066627978439),linewidth(4pt) + dotstyle); 
label("$T$", (1.5276015609084894,-1.03446229467741), NE * labelscalefactor); 
dot((-1.8933890982991697,1.329770657951845),linewidth(4pt) + dotstyle); 
label("$A_S$", (-2.6881610871824453,1.9098798722432486), NE * labelscalefactor); 
dot((4.11717186677921,-7.0466585093944225),linewidth(4pt) + dotstyle); 
label("$M'$", (4.23773469182409,-6.789312893658698), NE * labelscalefactor); 
dot((-5.953777845649177,-3.7536345426339013),linewidth(4pt) + dotstyle); 
label("$J$", (-5.833253856393142,-3.4769279558729567), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */

[/asy]
This post has been edited 1 time. Last edited by Dr_Vex, Jun 26, 2020, 9:29 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MP8148
888 posts
#19 • 1 Y
Y by Mango247
[asy]
size(8cm);
defaultpen(fontsize(8.5pt));

pair A = dir(125), B = dir(210), C = dir(330), O = origin, A1 = 2O-A, I = incenter(A,B,C), D = foot(I,B,C), E = foot(I,C,A), F = foot(I,A,B), T = foot(D,E,F), M = (E+F)/2, G = intersectionpoints(unitcircle,circumcircle(A1,E,F))[0], H = T+dir(G--T)*abs(E-T)*abs(F-T)/abs(G-T), J = extension(A1,G,E,F), N = dir(270), K = intersectionpoints(unitcircle,circumcircle(A,E,F))[1], L = intersectionpoint(unitcircle,A+dir(A--T)*0.0069--A+dir(A--T)*69);

draw(circumcircle(G,E,F)^^circumcircle(A,M,G));
draw(A--B--C--A--L^^unitcircle);
draw(H--G, dashed);
draw(A--J--E^^A1--J, blue);
draw(circumcircle(A,E,F));
draw(E--D--F^^T--D, gray);

dot("$A$", A, dir(90));
dot("$B$", B, dir(250));
dot("$C$", C, dir(330));
dot("$E$", E, dir(60));
dot("$F$", F, dir(135));
dot("$T$", T, dir(270));
dot("$M$", M, dir(315));
dot("$G$", G, dir(225));
dot("$H$", H, dir(45));
dot("$J$", J, dir(225));
dot("$A'$", A1, dir(315));
dot("$K$", K, dir(150));
dot("$L$", L, dir(240));
dot("$D$", D, dir(45));
[/asy]
Redefine $T$ be the point on $\overline{EF}$ such that $\overline{DT} \perp \overline{EF}$. Let $L = \overline{AT} \cap (ABC)$ and $K = (AEF) \cap (ABC)$.

By radical axis $\overline{AK}$, $\overline{EF}$, and $\overline{A'G}$ concur at a point $J$, which lies on $(AMG)$ from $\angle AGJ = \angle AMJ = 90^\circ$. It is well-known that $KBLC$ is harmonic, so $$-1  = (K,L;B,C) \overset{A}{=} (J,T;F,E).$$This implies $$\text{Pow}(T,(A'EF)) = ET \cdot FE = MT \cdot JT = \text{Pow}(T,(AMG)),$$so $T$ lies on the radical axis $\overline{HG}$ of $(A'EF)$ and $(AMG)$ as desired. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
snakeaid
125 posts
#20 • 1 Y
Y by Didier
Redefine $T$ to be the foot of the perpendicular from $D$ to $\overline{EF}$. We will prove that it lies on the radical axis of $(A'EF)$ and $(AMG)$. Let $R$ be the second intersection of $(ABC)$ and $(AEF)$. Then it's well-known that $R,T,I,A'$ are collinear. Notice that by radical center $A'G$, $AR$, $EF$ are concurrent, say at $S$. Then $\angle AGS=180^{\circ}-\angle AGA'=90^{\circ}=\angle SMA \implies S \in (AMG)$. Also $\angle SRI-180^{\circ}-\angle ARI=90^{\circ}=\angle SMI \implies SRMI$ is cyclic. Then $\text{Pow}(T,(AMG))=ST\cdot TM=RT\cdot TI=FT \cdot TE=\text{Pow}(T,(A'EF))$, as desired.
This post has been edited 1 time. Last edited by snakeaid, Dec 14, 2020, 8:55 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IndoMathXdZ
691 posts
#21
Y by
Funny problem.
Redefine $T$ to be the foot of perpendicular from $D$ to $EF$. We will prove $G,T,H$ are collinear instead, i.e.
\[ \text{Pow}_T (AMG) = \text{Pow}_T (EFA') \]Apparently, $\text{Pow}_T (EFA') = TE \cdot TF$, and by letting $EF \cap (AMG) = J$, we have $\text{Pow}_T (AMG) = TM \cdot TJ$.
Therefore, we need to prove
\[ TE \cdot TF = TM \cdot TJ \]which is equivalent to proving $(E,F;T,J) = -1$. Let $AJ \cap (ABC) = K$.

Claim 01. $J,G,A'$ collinear.
Proof. Let $A'G \cap (AMG) = J'$. Since $A'$ is the antipode of $A$, we have $\measuredangle AGA' = 90^{\circ}$, and hence $\measuredangle AGJ' = 90^{\circ} = \measuredangle AMJ' = \measuredangle AMJ$, proving $J' \equiv J$.

Claim 02. $K,D,Y$ collinear.
Proof. By our previous claim, $J$ lies on the radical axis of $(ABC)$ and $(EFA')$, and therefore,
\[ JK \cdot JA = JF \cdot JE \]which means $K = (AEF) \cap (ABC)$. Therefore, we know that $K$ is the incenter Miquel Point. Therefore, if $X$ and $Y$ are the midpoint of arcs $BC$ containing $A$ and not containing $A$ respectively, we have $K,D,Y$ collinear. By letting $AT \cap (ABC) = L$, we have $L,D,X$ by a well known lemma.
Thus,
\[ -1 = (X,Y;B,C) \overset{D}{=} (L,K;C,B) \overset{A}{=} (T,J;E,F) \]which is what we wanted.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
VulcanForge
625 posts
#22
Y by
Redefine $T$ to be the foot from $D$ to $EF$ and $H$ to be the second intersection of $GT$ with $(A'EF)$, and we will show $AGMH$ cyclic. Add in the point $S=(AEF) \cap (ABC)$ and let $L= AS \cap EF$. We will in fact show $G,M,H$ lie on the circle with diameter $AL$.

First note $M$ lies on that circle since $AM \perp ML$ for obvious reasons. By radical axis on $(ABC),(A'EF),(AEF)$ we get $A'GL$ collinear hence $AG \perp GL$. It remains to show $AH \perp HL$. Indeed, letting $LH$ intersect $(A'EF)$ again at $K$ and noting $KH$ and $AS$ intersect on the radical axis of $(AEF)$ and $(A'EF)$, we have $ASKH$ cyclic and thus $AH \perp HK$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeronimoStilton
1521 posts
#23 • 3 Y
Y by Mango247, Mango247, Mango247
Solution with hint from @above.

It is well-known that $T,I,A'$ are collinear along with $(AEF)\cap (ABC)=K\ne A$. Let line $EF$ intersect $(AGM)$ again at point $J$. Observe that $AJ$ is the diameter of $(AGM)$. Moreover, since $\angle A'GA=90^\circ=\angle AGJ$, $A',G,J$ are collinear. So by radical axis theorem on $(AEF)$, $(ABC)$, $(A'EF)$, $K$ lies on $AJ$.

Now $JT\cdot JM = JK\cdot JA=JE\cdot JF$, implying $(JT;EF)$ harmonic. It is well-known that $TF\cdot TE=TJ\cdot TM$ then. This implies the desired, since $T$ must lie on the radical axis of $(AHMGJ)$ and $(A'GFHE)$.

Sketch for second well-known part
This post has been edited 1 time. Last edited by GeronimoStilton, Apr 6, 2021, 9:27 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dwip_neel
40 posts
#25
Y by
deleted as required
This post has been edited 1 time. Last edited by dwip_neel, Aug 31, 2021, 11:09 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#27
Y by
[asy]
size(8cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -9.664267992854413, xmax = 8.910818228494016, ymin = -5.8993890210618805, ymax = 5.012432929595713;  /* image dimensions */
pen qqwuqq = rgb(0,0.39215686274509803,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen zzttff = rgb(0.6,0.2,1); pen ffvvqq = rgb(1,0.3333333333333333,0); 
 /* draw figures */
draw(circle((-1.7768158352132182,-0.7516822995618229), 1.7652367603555659), linewidth(0.8) + qqwuqq); 
draw(circle((-0.5651633926932255,-0.2764813199926565), 3.9584030633428173), linewidth(0.8) + fuqqzz); 
draw(circle((-2.3384079414166115,1.08415885457241), 1.919817270343408), linewidth(0.8) + qqwuqq); 
draw(circle((-1.2225909183064403,-2.5634401570264176), 3.1274391741754353), linewidth(0.8) + qqwuqq); 
draw(circle((-4.48752331183388,0.8510717143897553), 2.6078141261627823), linewidth(0.8) + qqwuqq); 
draw((-4.257045907673084,1.1514396538248008)--(-1.7768158352132182,-0.7516822995618229), linewidth(0.8) + linetype("4 4") + zzttff); 
draw((-1.8423521740436113,-2.5157020864132407)--(-2.5675883939229163,-0.1449093096982009), linewidth(0.8) + zzttff); 
draw((-6.075046564922025,-1.2178566162970728)--(-0.5151604411450491,0.4829376770825319), linewidth(0.8) + linetype("4 4") + ffvvqq); 
draw((-6.075046564922025,-1.2178566162970728)--(1.769673214613549,-3.472962639985313), linewidth(0.8) + linetype("4 4") + ffvvqq); 
draw((-6.075046564922025,-1.2178566162970728)--(-2.9,2.92), linewidth(0.8) + linetype("4 4") + ffvvqq); 
draw((-2.9,2.92)--(-3.88,-2.44), linewidth(1.2) + blue); 
draw((-3.88,-2.44)--(2.58,-2.68), linewidth(1.6) + blue); 
draw((2.58,-2.68)--(-2.9,2.92), linewidth(1.6) + blue); 
 /* dots and labels */
dot((-2.9,2.92),dotstyle); 
label("$A$", (-2.8131431421552735,3.138265037307195), NE * labelscalefactor); 
dot((-3.88,-2.44),dotstyle); 
label("$B$", (-3.791875263683722,-2.234349587253223), NE * labelscalefactor); 
dot((2.58,-2.68),dotstyle); 
label("$C$", (2.6635919208656196,-2.463414551866264), NE * labelscalefactor); 
dot((-1.8423521740436113,-2.5157020864132407),linewidth(4pt) + dotstyle); 
label("$D$", (-1.7511146698584463,-2.3592941134057908), NE * labelscalefactor); 
dot((-0.5151604411450491,0.4829376770825319),linewidth(4pt) + dotstyle); 
label("$E$", (-0.4391971452564833,0.639374514255838), NE * labelscalefactor); 
dot((-3.513267319342443,-0.4341967670158078),linewidth(4pt) + dotstyle); 
label("$F$", (-3.437865772918113,-0.27688534419632627), NE * labelscalefactor); 
dot((-0.5651633926932255,-0.2764813199926565),linewidth(4pt) + dotstyle); 
label("$O$", (-0.4808453206406726,-0.11029264265956915), NE * labelscalefactor); 
dot((1.769673214613549,-3.472962639985313),dotstyle); 
label("$A'$", (1.8514525008739282,-3.2547298841658603), NE * labelscalefactor); 
dot((-4.241058303247535,-1.7450695599165347),linewidth(4pt) + dotstyle); 
label("$G$", (-4.166708842141426,-1.588802868798289), NE * labelscalefactor); 
dot((-2.014213880243746,0.02437045503336205),linewidth(4pt) + dotstyle); 
label("$M$", (-1.8135869329347303,0.2853650234902291), NE * labelscalefactor); 
dot((-1.7768158352132182,-0.7516822995618229),linewidth(4pt) + dotstyle); 
label("$I$", (-1.6886424067821624,-0.5892466595777459), NE * labelscalefactor); 
dot((-6.075046564922025,-1.2178566162970728),linewidth(4pt) + dotstyle); 
label("$K$", (-5.999228559045755,-1.047376588803828), NE * labelscalefactor); 
dot((-4.257045907673084,1.1514396538248008),linewidth(4pt) + dotstyle); 
label("$J$", (-4.166708842141426,1.3265694080949613), NE * labelscalefactor); 
dot((-2.5675883939229163,-0.1449093096982009),linewidth(4pt) + dotstyle); 
label("$T$", (-2.479957739081759,0.01465188349299872), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]

Let $EF$ meet $(AMG)$ at $K$. Notice that
$$\angle AGK=\angle AMK=90^{\circ}=\angle AGA'$$hence $K,G,A'$ are collinear. Let $AK$ meet $(ABC)$ at $J$, then $$KJ\times KA=KG\times KA'=KF\times KE$$Hence $J$ lies on $(AEF)$. Redefine $T$ as the projection of $D$ on $EF$, then
$$\frac{FT}{TE}=\frac{\tan\angle FDT}{\tan\angle TDE}=\frac{\tan\angle BID}{\tan\angle DIC}=\frac{BD}{DC}$$Therefore, $J$ is the center of spiral sim. sending $\overline{FTE}$ to $\overline{BDC}$. So
$$\frac{JF}{JE}=\frac{FB}{EC}=\frac{BD}{DC}=\frac{FT}{TE}$$whichh implies $JT$ is the internal angle bisector of $\angle FJE$, meanwhile since $AF=AE$, $JK$ is the external angle bisector of $\angle FJE$, so $(T,H;F,E)=-1$. Therefore,
$$HF\times HE=HT\times HM\hspace{20pt}(1)$$$$MT\times MH=ME^2\hspace{20pt}(2)$$We now show that $T$ lies on the radical axis of $\Omega_1=(HMG)$ and $\Omega_2=(EFA')$. Indeed, for each point $X$ on the plane define
$$f(X)=Pow(X,\Omega_1)-Pow(X,\Omega_2)$$Then by linearity of PoP,
$$MHf(T)=MTf(H)+HTf(M)=MT\cdot HF\cdot HE-HT\cdot ME^2=MT\cdot HT\cdot HM-HT\cdot MT\cdot MH=0$$as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Number1048576
91 posts
#28
Y by
hint 1
hint 2
solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bryanguo
1031 posts
#29 • 1 Y
Y by channing421
Great problem. I believe this works.
[asy]
import olympiad;
unitsize(45);
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -3.4556855291888393, xmax = 7.161644883742675, ymin = -1.975717796255949, ymax = 4.150731345409496;  /* image dimensions */
pen zzwwff = rgb(0.6,0.4,1); pen qqzzff = rgb(0,0.6,1); 

draw((0.7751464073673895,3.3086911070471117)--(0,0)--(4,0)--cycle, linewidth(0.65) + zzwwff); 
 /* draw figures */
draw((0.7751464073673895,3.3086911070471117)--(0,0), linewidth(0.65) + zzwwff); 
draw((0,0)--(4,0), linewidth(0.65) + zzwwff); 
draw((4,0)--(0.7751464073673895,3.3086911070471117), linewidth(0.65) + zzwwff); 
draw(circle((2,1.2765929021365985), 2.3726966594542893), linewidth(0.65) + qqzzff); 
draw(circle((1.3889916156368791,1.1011928091575605), 1.1011928091575605), linewidth(0.65) + qqzzff); 
draw(circle((1.6561974031409439,0.14027251010636455), 1.8064053063692798), linewidth(0.65) + qqzzff); 
draw((0.31682872142499685,1.3523746779608636)--(2.177579263719154,1.8697987707740351), linewidth(0.65)); 
draw((2.177579263719154,1.8697987707740351)--(1.3889916156368791,0), linewidth(0.65)); 
draw((1.3889916156368791,0)--(0.31682872142499685,1.3523746779608636), linewidth(0.65)); 
draw(circle((-0.5115130232317311,2.0364707547989784), 1.8094300525369909), linewidth(0.65) + qqzzff); 
draw((-0.14594123637954498,0.26435496183235674)--(1.2934839092391737,1.909888019820456), linewidth(0.65)); 
draw((1.3889916156368791,0)--(0.9629704469345858,1.5320491096223667), linewidth(0.65)); 
draw((1.3889916156368791,1.1011928091575605)--(-0.0181461969054606,2.524300947194244), linewidth(0.65)); 
draw(circle((1.0820690115021343,2.2049419581023364), 1.1456280673609427), linewidth(0.65) + qqzzff); 
draw((1.3889916156368791,1.1011928091575605)--(3.2248535926326105,-0.7555053027739147), linewidth(0.65)); 
draw((2,-1.0961037573176908)--(-0.0181461969054606,2.524300947194244), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(3.2248535926326105,-0.7555053027739147), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(2,-1.0961037573176908), linewidth(0.65)); 
draw((3.2248535926326105,-0.7555053027739147)--(-1.7981724538308512,0.7642504025508446), linewidth(0.65)); 
draw((-1.7981724538308512,0.7642504025508446)--(0.7751464073673895,3.3086911070471117), linewidth(0.65)); 
draw((-1.7981724538308512,0.7642504025508446)--(0.31682872142499685,1.3523746779608636), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(-0.14594123637954498,0.26435496183235674), linewidth(0.65)); 
draw((-1.7981724538308512,0.7642504025508446)--(1.3889916156368791,1.1011928091575605), linewidth(0.65)); 
draw((0.7751464073673895,3.3086911070471117)--(1.0127252647845169,1.0614144711059215), linewidth(0.65)); 
 /* dots and labels */
dot((0.7751464073673895,3.3086911070471117),dotstyle); 
label("$A$", (0.7995630827824076,3.381460016535215), N * labelscalefactor); 
dot((0,0),dotstyle); 
label("$B$", (0.10138532040368696,-0.1253083835583541), W * labelscalefactor); 
dot((4,0),dotstyle); 
label("$C$", (4.042977334252348,-0.11144763889395265), NE * labelscalefactor); 
dot((1.3889916156368791,1.1011928091575605),linewidth(4pt) + dotstyle); 
label("$I$", (1.4163662203482723,1.1568104978987808), NE * labelscalefactor); 
dot((2,1.2765929021365985),linewidth(4pt) + dotstyle); 
label("$O$", (2.0262389855819363,1.330069806203799), NE * labelscalefactor); 
dot((1.3889916156368791,0),linewidth(4pt) + dotstyle); 
label("$D$", (1.4424106353652614,-0.11837801122615338), E * labelscalefactor); 
dot((2.177579263719154,1.8697987707740351),linewidth(4pt) + dotstyle); 
label("$E$", (2.234150155547958,1.891429965112058), NE * labelscalefactor); 
dot((0.31682872142499685,1.3523746779608636),linewidth(4pt) + dotstyle); 
label("$F$", (0.2659244132029516,1.4478861358512114), NE * labelscalefactor); 
dot((3.2248535926326105,-0.7555053027739147),dotstyle); 
label("$A'$", (3.259845260713666,-0.8737885954360328), NE * labelscalefactor); 
dot((-0.14594123637954498,0.26435496183235674),linewidth(4pt) + dotstyle); 
label("$G$", (-0.2885053733731066,0.1380457650652736), SW * labelscalefactor); 
dot((1.2472039925720753,1.6110867243674494),linewidth(4pt) + dotstyle); 
label("$M$", (1.29854989070086,1.6835187951460362), NE * labelscalefactor); 
dot((1.2934839092391737,1.909888019820456),linewidth(4pt) + dotstyle); 
label("$H$", (1.319341007697462,1.967664060766266), NE * labelscalefactor); 
dot((0.9629704469345858,1.5320491096223667),linewidth(4pt) + dotstyle); 
label("$T$", (0.91737941242982,1.6211454441562296), NE * labelscalefactor); 
dot((-0.0181461969054606,2.524300947194244),linewidth(4pt) + dotstyle); 
label("$R$", (-0.12910680973248986,2.5498153366711276), N * labelscalefactor); 
dot((2,-1.0961037573176908),linewidth(4pt) + dotstyle); 
label("$J$", (1.9915871239209328,-1.1341679567104709), S * labelscalefactor); 
dot((-1.7981724538308512,0.7642504025508446),linewidth(4pt) + dotstyle); 
label("$K$", (-1.8379339884368798,0.6647540623125291), W * labelscalefactor); 
dot((1.0127252647845169,1.0614144711059215),linewidth(4pt) + dotstyle); 
label("$L$", (1.019389313553884,1.1338614601131567), NW * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
 [/asy]
Define $R$ the $A$-Sharky Devil point of $\triangle ABC.$ Let $J$ be the midpoint of $\widehat{BC}$ not containing $A,$ and $K$ is the concurrence point of radical axes on $(AFE), (GFE),$ and $(ABC).$

Note $AMGK$ is then a cyclic quadrilateral with diameter $AK$ since $\angle AMK = \angle AGK = 90^\circ.$ Extend $AT$ to meet $(AMG)$ at $L.$ By Thales Theorem $\angle ALK = 90^\circ.$ From the problem statement, $T$ lies on the radical axis of $(AMG)$ and $(A'EF).$ Therefore $TL \cdot TA = TF \cdot TE,$ and by the converse of Power of a Point, $AFLE$ is cyclic. Since $AI$ is a diameter of $(AFE)$ it follows $\angle ALI = 90^\circ,$ so $K,L,I$ are collinear. It follows $T$ is the orthocenter of $\triangle AIK.$

It follows since $IR \perp AK$ that $I,T,R$ are collinear. By the Sharky-Devil Lemma, $DT \perp EF,$ as required.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
VicKmath7
1385 posts
#30
Y by
Quite nice config geo.
We begin by applying radical axis to $(A'EF),(AEF),(ABC)$. Let $TI \cap (ABC)=R$, so $AR,EF,GA'$ concur at $P$. Since $\angle AGA'= \angle AMF =90$, we have that $P \in (AMG)$ (and it has diameter $AP$). We want $T\in GH$, which the radical axis of $(A'EF)$ and $(AMG)$, so we want $TF \cdot TE=TM \cdot TP \iff (P,T,F,E)=-1$. But note that $PT \cdot PM=PR \cdot PA= PF \cdot PE$, which is sufficient.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
UI_MathZ_25
116 posts
#31
Y by
Solution in Spanish
This post has been edited 1 time. Last edited by UI_MathZ_25, Jan 16, 2024, 7:03 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pyramix
419 posts
#32
Y by
Define $T$ to be the foot of $D$ onto $EF$. We need to show that $T$ has same power w.r.t. circles $(DEF),(AMG),(A'EF)$.

Define $K=MF\cap (AMG)$. Since $AM\perp EF$, we have $\angle AMK=90^\circ$, which means that $K$ is the antipode of $A$ in $(AMG)$. Since $A'$ is also the antipode of $A$ in $(ABC)$, we have $\angle AGK=\angle AGA'=90^\circ$. Hence, $A',K,G$ are collinear.

Claim 1: $(K,T;E,F)=-1\Leftrightarrow T\in HG$.
Proof. \[(K,T;E,F)=-1\Leftrightarrow MT\cdot MK=ME^2\Leftrightarrow TM\cdot TK=TE\cdot TF\]So, $T$ has equal power from circles $(AMG),(DEF)$. However, $T$ also has equal power from circles $(A'EF),(DEF)$ as $T\in EF$ by definition. Hence, $T$ has equal power from all three circles (as required), which means $T\in HG$. $\blacksquare$

Define $S=(AEF)\cap (ABC)$ to be the Sharkydevil Point in $ABC$.

Claim 2: $K,S,A$ are collinear and $A',I,S,T$ collinear.
Proof. Simply note that $K$ lies on the radical axes of circles $(AEF),(A'EF)$ and $(A'EF),(ABC)$ as established. Hence, $K$ lies on the radical axis of $(ABC),(AEF)$, which is line $AS$. So, $K\in AS$.
Note that $\angle ASI=90^\circ=\angle ASA'$, which means $S,I,A'$ are collinear. Invert about the incircle to see that $(ABC)$ goes to ninepoint circle of the intouch triangle and $(AEF)$ goes to line $EF$, which means $S$ goes to $T$. So, $I,S,T$ are collinear as well. $\blacksquare$

Finally, note that taking perspective at $S$ gives $(K,T;E,F)=(A,I;E,F)=-1$, which finishes the problem by Claim 1.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
YaoAOPS
1492 posts
#33 • 1 Y
Y by MS_asdfgzxcvb
the fish are dying


Let $S$ be the Sharkey-Devil point, so $(ASEFI), (DEF), (GFEA'), (ABC)$ share a radical center $T'$. Since $\measuredangle AGT' = \measuredangle AMT' = 90^\circ$, $T'$ lies on $(AMM')$. We want to show that $T$ lies on the radical axis of $(AMG)$ and $(AEIF)$, or that $TF \cdot TE = TM \cdot TM'$, or that $M'$ is harmonic conjugate of $M$ in $EF$. Then, since $S$ lies on $TI$, and $AS \perp TI, AM \perp MM'$, $T$ is the orthocenter of $\triangle AM'I$. As such, $AT \perp MI$, so the polar of $M'$ wrt the incircle is $AT$ and we are done.
Z K Y
N Quick Reply
G
H
=
a