Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Jun 2, 2025
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Jun 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Cool integer FE
Rijul saini   2
N a minute ago by ZVFrozel
Source: LMAO Revenge 2025 Day 1 Problem 1
Alice has a function $f : \mathbb N \rightarrow \mathbb N$ such that for all naturals $a, b$ the function satisfies:
\[a + b \mid a^{f(a)} + b^{f(b)} \]Bob wants to find all possible functions Alice could have. Help Bob and find all functions that Alice could have.
2 replies
Rijul saini
Yesterday at 7:06 PM
ZVFrozel
a minute ago
A beautiful collinearity regarding three wonderful points
math_pi_rate   10
N 14 minutes ago by alexanderchew
Source: Own
Let $\triangle DEF$ be the medial triangle of an acute-angle triangle $\triangle ABC$. Suppose the line through $A$ perpendicular to $AB$ meet $EF$ at $A_B$. Define $A_C,B_A,B_C,C_A,C_B$ analogously. Let $B_CC_B \cap BC=X_A$. Similarly define $X_B$ and $X_C$. Suppose the circle with diameter $BC$ meet the $A$-altitude at $A'$, where $A'$ lies inside $\triangle ABC$. Define $B'$ and $C'$ similarly. Let $N$ be the circumcenter of $\triangle DEF$, and let $\omega_A$ be the circle with diameter $X_AN$, which meets $\odot (X_A,A')$ at $A_1,A_2$. Similarly define $\omega_B,B_1,B_2$ and $\omega_C,C_1,C_2$.
1) Show that $X_A,X_B,X_C$ are collinear.
2) Prove that $A_1,A_2,B_1,B_2,C_1,C_2$ lie on a circle centered at $N$.
3) Prove that $\omega_A,\omega_B,\omega_C$ are coaxial.
4) Show that the line joining $X_A,X_B,X_C$ is perpendicular to the radical axis of $\omega_A,\omega_B,\omega_C$.
10 replies
math_pi_rate
Nov 8, 2018
alexanderchew
14 minutes ago
Tricky FE
Rijul saini   4
N 15 minutes ago by YaoAOPS
Source: LMAO 2025 Day 1 Problem 1
Let $\mathbb{R}$ denote the set of all real numbers. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that
$$f(xy) + f(f(y)) = f((x + 1)f(y))$$for all real numbers $x$, $y$.

Proposed by MV Adhitya and Kanav Talwar
4 replies
Rijul saini
Yesterday at 6:58 PM
YaoAOPS
15 minutes ago
Quotient of Polynomials is Quadratic
tastymath75025   26
N 28 minutes ago by pi271828
Source: USA TSTST 2017 Problem 3, by Linus Hamilton and Calvin Deng
Consider solutions to the equation \[x^2-cx+1 = \dfrac{f(x)}{g(x)},\]where $f$ and $g$ are polynomials with nonnegative real coefficients. For each $c>0$, determine the minimum possible degree of $f$, or show that no such $f,g$ exist.

Proposed by Linus Hamilton and Calvin Deng
26 replies
tastymath75025
Jun 29, 2017
pi271828
28 minutes ago
Bugs Bunny at it again
Rijul saini   4
N 35 minutes ago by ThatApollo777
Source: LMAO 2025 Day 2 Problem 1
Bugs Bunny wants to choose a number $k$ such that every collection of $k$ consecutive positive integers contains an integer whose sum of digits is divisible by $2025$.

Find the smallest positive integer $k$ for which he can do this, or prove that none exist.

Proposed by Saikat Debnath and MV Adhitya
4 replies
Rijul saini
Yesterday at 7:01 PM
ThatApollo777
35 minutes ago
Orthocenters equidistant from circumcenter
Rijul saini   5
N 41 minutes ago by YaoAOPS
Source: India IMOTC 2025 Day 1 Problem 2
In triangle $ABC$, consider points $A_1,A_2$ on line $BC$ such that $A_1,B,C,A_2$ are in that order and $A_1B=AC$ and $CA_2=AB$. Similarly consider points $B_1,B_2$ on line $AC$, and $C_1,C_2$ on line $AB$. Prove that orthocenters of triangles $A_1B_1C_1$ and $A_2B_2C_2$ are equidistant from the circumcenter of $ABC$.

Proposed by Shantanu Nene
5 replies
1 viewing
Rijul saini
Yesterday at 6:31 PM
YaoAOPS
41 minutes ago
Six variables (2)
Nguyenhuyen_AG   1
N an hour ago by lbh_qys
Let $a, \, b, \,c, \, x, \, y, \, z$ be six positive real numbers. Prove that
\[a^2+b^2+c^2+\frac{4(ax+by+cz)\sqrt{ab+bc+ca}}{x+y+z} \geqslant 2(ab+bc+ca).\]
1 reply
Nguyenhuyen_AG
an hour ago
lbh_qys
an hour ago
The line is a common tangent
Rijul saini   3
N an hour ago by pingupignu
Source: India IMOTC 2025 Day 4 Problem 3
Let $ABCD$ be a cyclic quadrilateral with circumcentre $O$ and circumcircle $\Gamma$. Let $T$ be the intersection of tangents at $B$ and $C$ to $\Gamma$. Let $\omega$ be the circumcircle of triangle $TBC$ and let $M(\neq T)$, $N(\neq T)$ denote the second intersections of $TA,TD$ with $\omega$ respectively. Let $AD$ and $BC$ intersect at $E$ and $\Omega$ be the circumcircle of triangle $EMN$. If $AD$ intersects $\Omega$ again at $X \neq E$, prove that the line tangent to $\Omega$ at $X$ is also tangent to $\omega$.

Proposed by Malay Mahajan and Siddharth Choppara
3 replies
Rijul saini
Yesterday at 6:47 PM
pingupignu
an hour ago
One of P or Q lies on circle
Rijul saini   6
N an hour ago by ZVFrozel
Source: LMAO 2025 Day 1 Problem 3
Let $ABC$ be an acute triangle with orthocenter $H$. Let $M$ be the midpoint of $BC$, and $K$ be the intersection of the tangents from $B$ and $C$ to the circumcircle of $ABC$. Denote by $\Omega$ the circle centered at $H$ and tangent to line $AM$.

Suppose $AK$ intersects $\Omega$ at two distinct points $X$, $Y$.
Lines $BX$ and $CY$ meet at $P$, while lines $BY$ and $CX$ meet at $Q$. Prove that either $P$ or $Q$ lies on $\Omega$.

Proposed by MV Adhitya, Archit Manas and Arnav Nanal
6 replies
+1 w
Rijul saini
Yesterday at 6:59 PM
ZVFrozel
an hour ago
Polynomial strategy game
Rijul saini   1
N an hour ago by everythingpi3141592
Source: India IMOTC 2025 Day 1 Problem 3
Let $N \geqslant 2024!$ be a positive integer. Alice and Bob play the following game, with Alice going first after which they alternate turns. They determine the numbers $a_0,a_1, a_2, \ldots, a_{2025}$ in the following way.

On the $k$th turn, the player whose turn it is sets $a_{k-1}$ to be an integer such that:
$\bullet$ $1\leqslant a_{k-1}\leqslant N$
$\bullet$ There exists a polynomial $P$ with integer coefficients and $ P(i) = a_i$ for $0 \leqslant i \leqslant k-1$

Alice wins if and only if Bob is unable to pick a value in one of his moves i.e. $a_{1}, a_3,\ldots$. In particular, she also loses if Bob is able to pick $a_{2025}$ successfully.
Determine all values of $N$ for which Alice can ensure that she wins regardless of Bob's strategy.

Proposed by Atul Shatavart Nadig and Rohan Goyal
1 reply
Rijul saini
Yesterday at 6:31 PM
everythingpi3141592
an hour ago
One of the lines is tangent
Rijul saini   4
N an hour ago by ZVFrozel
Source: LMAO 2025 Day 2 Problem 2
Let $ABC$ be a scalene triangle with incircle $\omega$. Denote by $N$ the midpoint of arc $BAC$ in the circumcircle of $ABC$, and by $D$ the point where the $A$-excircle touches $BC$. Suppose the circumcircle of $AND$ meets $BC$ again at $P \neq D$ and intersects $\omega$ at two points $X$, $Y$.

Prove that either $PX$ or $PY$ is tangent to $\omega$.

Proposed by Sanjana Philo Chacko
4 replies
Rijul saini
Yesterday at 7:02 PM
ZVFrozel
an hour ago
Circumcenter lies on altitude
ABCDE   59
N 2 hours ago by Ilikeminecraft
Source: 2016 ELMO Problem 2
Oscar is drawing diagrams with trash can lids and sticks. He draws a triangle $ABC$ and a point $D$ such that $DB$ and $DC$ are tangent to the circumcircle of $ABC$. Let $B'$ be the reflection of $B$ over $AC$ and $C'$ be the reflection of $C$ over $AB$. If $O$ is the circumcenter of $DB'C'$, help Oscar prove that $AO$ is perpendicular to $BC$.

James Lin
59 replies
ABCDE
Jun 24, 2016
Ilikeminecraft
2 hours ago
OreINMO: My stepfunction cannot be this linear
anantmudgal09   15
N 2 hours ago by shendrew7
Source: INMO 2023 P3
Let $\mathbb N$ denote the set of all positive integers. Find all real numbers $c$ for which there exists a function $f:\mathbb N\to \mathbb N$ satisfying:
[list]
[*] for any $x,a\in\mathbb N$, the quantity $\frac{f(x+a)-f(x)}{a}$ is an integer if and only if $a=1$;
[*] for all $x\in \mathbb N$, we have $|f(x)-cx|<2023$.
[/list]

Proposed by Sutanay Bhattacharya
15 replies
anantmudgal09
Jan 15, 2023
shendrew7
2 hours ago
a_0 , a_1 are coprime in integer polynomial with n rel. prime integer roots
parmenides51   4
N 3 hours ago by pudim37
Source: Hong Kong TST - HKTST 2024 1.1
Let $n$ be a positive integer larger than $1$, and let $a_0,a_1,\dots,a_{n-1}$ be integers. It is known that the equation $$x^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\cdots+a_1x+a_0=0$$has $n$ pairwise relatively prime integer roots. Prove that $a_0$ and $a_1$ are relatively prime.
4 replies
parmenides51
Jul 20, 2024
pudim37
3 hours ago
I need some pure geometry :))
grobber   26
N Jan 11, 2025 by Double07
Source: IMO Shortlist 1996 problem G3
Let $O$ be the circumcenter and $H$ the orthocenter of an acute-angled triangle $ABC$ such that $BC>CA$. Let $F$ be the foot of the altitude $CH$ of triangle $ABC$. The perpendicular to the line $OF$ at the point $F$ intersects the line $AC$ at $P$. Prove that $\measuredangle FHP=\measuredangle BAC$.
26 replies
grobber
Oct 4, 2003
Double07
Jan 11, 2025
I need some pure geometry :))
G H J
Source: IMO Shortlist 1996 problem G3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
grobber
7849 posts
#1 • 5 Y
Y by nguyendangkhoa17112003, Adventure10, mathematicsy, Mango247, ehuseyinyigit
Let $O$ be the circumcenter and $H$ the orthocenter of an acute-angled triangle $ABC$ such that $BC>CA$. Let $F$ be the foot of the altitude $CH$ of triangle $ABC$. The perpendicular to the line $OF$ at the point $F$ intersects the line $AC$ at $P$. Prove that $\measuredangle FHP=\measuredangle BAC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ya
4 posts
#2 • 3 Y
Y by sayantanchakraborty, Adventure10, Mango247
Let E be the midpoint of AC, G of OP.
angle OFP = angle OEP = 90
OFPG- inscribed in circle with center G
Let K be midpiont of OH.
It is obvious that K is the center ot the Euler's (also known as nine-point) circle for the triangle ABC.
Than K, G lie on the perpendicular bisector of the common chord FE.
angle FHP = 90- angle EFH
and angle EFH = angle EFC = angle ECF = 90- angle A
angle FHP = angle A
There you go!
Irina
P.S. I think I've seen this somewhere before... Was it an IMO problem? I'm too lazy to check...
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
grobber
7849 posts
#3 • 6 Y
Y by Sx763_, Illuzion, Adventure10, Yunis019, Mango247, and 1 other user
It's from a shortlist (can't remember which one); I don't know if it was actually given at an IMO, but I doubt it. Nice soln! The problem I was referring to (the one I said you could use in order to prove this) is the Butterfly problem.

Here's my soln:

Let T be the intersection between the altitude CH and the circumcircle of ABC. Let the chord FP (a chord in the circumcircle of ABC) cut the chord BT at Q. OF perpendicular to chord PF and O is the center of the circumcircle => F is the midpt of the chord PF and, because of the butterfly property, F must be the midpt of PQ (*). It's well-known that F is the midpt of HT (**). From (*) and (**) we get triangles FHP and FTQ equal, so HP || TQ=TB, so angle FHP=angle FTB=angle BAC Q.E.D.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sam-n
793 posts
#4 • 2 Y
Y by Adventure10, Mango247
u find it in our olympiad (14-th Iranian Mathematical Olympiad 1996/1997 (1375)september).
it's beatifuly solved by batterfly theorem.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
darij grinberg
6555 posts
#5 • 4 Y
Y by Amir Hossein, Adventure10, Mango247, and 1 other user
If somebody is still interested, I have another solution:

I use the orthologic triangles theorem, which states that if ABC and A'B'C' are two non-degenerate triangles, then the lines $A\;\overline{B^{\prime }C^{\prime }}$, $B\;\overline{C^{\prime }A^{\prime }}$, $C\;\overline{A^{\prime }B^{\prime }}$ concur if and only if the lines $A^{\prime }\;\overline{BC}$, $B^{\prime }\;\overline{CA}$, $C^{\prime }\;\overline{AB}$ concur. Hereby, for any point P and any line g, the notion $P\;\overline{g}$ means the perpendicular from the point P to the line g.

For your problem, I will work with directed angles modulo 180°, and I will prove that < FHP = < CAB.

Let C' be the reflection of the point C in the line AB, or, equivalently, the reflection of the point C in the point F. Let also Z be the reflection of the point C in the point O. Then, the segment CZ is a diameter of the circumcircle of triangle ABC; hence, < CAZ = 90°, and thus $ZA \perp AC$. Similarly, $ZB \perp BC$.

Since the points O and F are the midpoints of the segments CZ and CC', we have OF || C'Z.

Now, since the point C' is the reflection of the point C in the line AB, we have < CAB = < BAC'. Thus, instead of proving < FHP = < CAB, it will be enough to show < FHP = < BAC'. But < FHP = < (FH; HP) = < (FH; AB) + < (AB; HP) = 90° + < (AB; HP), and < BAC' = < (AB; AC'). So we have to prove that 90° + < (AB; HP) = < (AB; AC'). This is equivalent to 90° = < (AB; AC') - < (AB; HP), what is obviously equivalent to 90° = < (HP; AC'). Thus, we must show that 90° = < (HP; AC'), i. e. we must show that $HP \perp AC^{\prime}$. In other words, we must show that the point P lies on the line $H\;\overline{AC^{\prime }}$.

Now, the point P is defined as the point of intersection of the lines $F\;\overline{OF}$ and AC. Since OF || C'Z, we can rewrite $F\;\overline{OF}$ as $F\;\overline{C^{\prime }Z}$, and since $ZA \perp AC$, we can rewrite AC as $A\;\overline{ZA}$. Thus, we must prove that the point P, defined as the point of intersection of the lines $F\;\overline{C^{\prime }Z}$ and $A\;\overline{ZA}$, lies on the line $H\;\overline{AC^{\prime }}$. Or, simply, we have to prove that the lines $F\;\overline{C^{\prime }Z}$, $A\;\overline{ZA}$, $H\;\overline{AC^{\prime }}$ concur. By the orthologic triangles theorem, applied to the triangles FAH and AC'Z, this is equivalent to proving that the lines $A\;\overline{AH}$, $C^{\prime }\;\overline{HF}$, $Z\;\overline{FA}$ concur. In order to prove this, we denote by S the point of intersection of the lines $A\;\overline{AH}$ and $C^{\prime }\;\overline{HF}$, and try to show that this point S lies on the line $Z\;\overline{FA}$, i. e. that we have $ZS\perp FA$.

Well, since the point S lies on the line $A\;\overline{AH}$, we have $AS \perp AH$, and together with $AH \perp BC$, this gives AS || BC. Since the point S lies on the line $C^{\prime }\;\overline{HF}$, we have $C^{\prime } S \perp HF$, and since $HF \perp AB$, this yields C'S || AB. If the lines CS and AB meet at K, then from C'S || AB, we have CK : KS = CF : FC', and since CF : FC' = 1 (the point C' is the reflection of the point C in the point F), we have CK : KS = 1, too, so that the point K is the midpoint of the segment CS. On the other hand, AS || BC yields BK : KA = CK : KS, what now shows us that BK : KA = 1, and the point K is the midpoint of the segment AB. Thus, the segments AB and CS have the point K as their common midpoint, i. e. these segments bisect each other, and it follows that the quadrilateral ACBS is a parallelogram. Hence, not only AS || BC, but also BS || AC. Now, BS || AC together with $ZA \perp AC$ yields $ZA \perp BS$, while AS || BC together with $ZB \perp BC$ yields $ZB \perp AS$. Hence, the point Z lies on two of the three altitudes of the triangle ABS; this means that the point Z is the orthocenter of this triangle, and hence also lies on the third altitude. And this yields $ZS \perp AB$, or, in other words, $ZS \perp FA$. Proof complete.

Well, this is a really monstrous solution, but it doesn't use the butterfly theorem, does it?

Darij
This post has been edited 1 time. Last edited by darij grinberg, Mar 5, 2006, 10:26 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
orl
3647 posts
#6 • 2 Y
Y by Adventure10, Mango247
Have a look at page 27/52.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Virgil Nicula
7054 posts
#7 • 2 Y
Y by Adventure10, Mango247
See the problem $P3$ from http://www.mathlinks.ro/Forum/viewtopic.php?t=46146
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
yetti
2643 posts
#8 • 4 Y
Y by Adventure10, Mango247, and 2 other users
Let the altitude CF meet the circumcircle (O) of the triangle $\triangle ABC$ again at a point D and consider the cyclic quadrilateral ADBC with the diagonal intersection F. Let the perpendicular to OF at F meet AC at P, DB at P', the circumcircle arc DC opposite to the vertex B at X, and the circumcircle arc DC opposite to the vertex A at X'. Since $XX' \perp OF$, FX = FX'. By the butterfly theorem, FP = FP' as well, i.e., P' is a reflection of P in the line OF. Reflect the cyclic quadrilateral ADBC in the line OF into a cyclic quadrilateral A'D'B'C' with the same circumcircle (O) and the same diagonal intersection F. Then D'B' meets AC at P and A'C' meets DB at P'. (This is true for any cyclic quadrilateral ADBC, not necessarily with perpendicular diagonals $AB \perp CD$.)

D is a reflection of the orthocenter H of the triangle $\triangle ABC$ in the line AB, FH = FD. By symmetry, FD' = FD, hence FH = FD = FD' and the triangle $\triangle DD'H$ has right angle $\angle DD'H = 90^\circ$. But D' is a reflection of D in OF, hence $DD' \perp OF$, so that $OF \perp FP$ are midlines of this right angle triangle, i.e., $HD' \perp FP$. Consequently, the quadrilateral FHPD' is a kite, which means that the triangles $\triangle FHP \cong \triangle FD'P$ are (oppositely) congruent and $\angle FHP = \angle FD'P$. But obviously, $\angle FD'P \equiv \angle C'D'B' = \angle CDB = \angle CAB$, which is what we were supposed to prove.

Butterfly theorem can be proved in various ways, synthetically or by trigonometry. For example, see http://www.cut-the-knot.org/pythagoras/Butterfly.shtml.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
xeroxia
1140 posts
#9 • 2 Y
Y by Adventure10, Mango247
Unfortunately, there is a trigonometric solution. And I will write it in $\LaTeX$, tenaciously.
Let $FP$ intersects the circumcircle of $\triangle AFC$ at $J$. We should show $H,P,J,C$ are concyclic because $\angle FAC = \angle FJC$ and we are asked to show $\angle FHP = \angle FAP$.
This yields $FP \cdot FJ = FH \cdot FC = AF \cdot FB$.
Let $\angle FCA = \alpha$, $\angle FCB = \beta$, and $\angle AFP = \theta$.

$\frac {AF}{FP} = \frac {\sin (90^{\circ} + \alpha - \theta)} {\sin (90^{\circ} - \alpha)}$

$\frac {FC}{FJ} = \frac {\sin (90^{\circ}  - \alpha )} {\sin (\alpha+ \theta)}$

$AF \cdot FC = FP \cdot FJ \cdot \frac {\cos(\alpha - \theta)}{\sin(\alpha+\theta)}$

We will show $\frac {FC}{BF} = \frac {\cos(\alpha - \theta)}{\sin(\alpha+\theta)} = \frac {\cos \beta} {\sin \beta}$.

Let $R=1$. Thus $AC = 2\cos \beta, BC=2\cos \alpha, BF=2\cos \alpha \sin \beta$, $AF = 2\cos\beta \sin \alpha, AB= 2\sin(\alpha + \beta)$.

So $MF = \sin(\beta - \alpha)$ and $OM = \cos (\alpha+\beta)$. And $\angle FOM = \angle AFP = \theta$. Then $\tan \theta = \frac {\sin(\beta - \alpha)}{\cos (\alpha+\beta)}$.

$\frac {\cos(\alpha - \theta)}{\sin(\alpha+\theta)} = \frac {\cos \alpha \cos \theta + \sin \alpha \sin \theta}{\sin \alpha \cos \theta + \cos \alpha \sin \theta} = \frac {\cos \alpha + \sin \alpha \tan \theta}{\sin \alpha  + \cos \alpha \tan \theta}$.

$\Rightarrow \frac {\cos \alpha + \sin \alpha \frac {\sin(\beta - \alpha)}{\cos (\alpha+\beta)}}{\sin \alpha  + \cos \alpha \frac {\sin(\beta - \alpha)}{\cos (\alpha+\beta)}} = \frac {\cos \alpha \cos (\alpha + \beta) + \sin \alpha \sin(\beta - \alpha)}{\sin \alpha \cos (\alpha + \beta)  + \cos \alpha \sin(\beta - \alpha)}$ $\Rightarrow \frac {\cos \beta (\cos^2 \alpha - \sin^2\alpha)}{\sin \beta (\cos^2 \alpha - \sin^2\alpha)} = \frac {\cos \beta} {\sin \beta}$ $Q.E.D$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Luis González
4151 posts
#10 • 3 Y
Y by wiseman, Adventure10, and 1 other user
Since $\angle HFA=\angle OFP=90^{\circ}$ and $\angle HAF=\angle OAP,$ it follows that $O,H$ are isogonal conjugates with respect to $\triangle APF.$ Consequently, if $M,N$ denote the midpoints of $AB,AC,$ then $\triangle FNM$ is the pedal triangle of $O$ with respect to $\triangle APF$ $\Longrightarrow$ $HP \perp FN$ $\Longrightarrow$ $\angle FHP=\angle NFA.$ Since $\triangle ANF$ is N-isosceles, then $\angle FHP=\angle BAC.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathreyes
109 posts
#11 • 2 Y
Y by Adventure10, Mango247
Luis González wrote:
...$\triangle FNM$ is the pedal triangle of $O$ with respect to $\triangle APF$ $\Longrightarrow$ $HP \perp FN$...

why? I think this is not a useful reason to ensure that perpendicularity.

The real reason (for me, at least) is:

$\measuredangle ONP=\measuredangle OFP=90\Longrightarrow NPFO$ is cyclic, so $\measuredangle FNP=\measuredangle FOP$ but $\measuredangle NPH=\measuredangle OPF$.
Finally $\measuredangle FNP+\measuredangle NPH=\measuredangle FOP+\measuredangle OPF=90$, so $HP \perp FN$.

(note that in my argument, there was no need to construct either point $M$ nor pedal triangle of $O$.)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mosquitall
571 posts
#12 • 4 Y
Y by AlastorMoody, Adventure10, Mango247, and 1 other user
Generalization:
Triangle $ABC$, and point $F$, such that $\angle BFC=\angle CFA=\gamma$, $\angle FAC=\beta$, point $H$ is on $CF$ and $\angle FHB=\beta$, point $P$ is on $AC$ and $\angle PHF=\beta$, point $O$ with $\angle CBO=\angle OCB= \alpha$, $\alpha+\beta+\gamma=180$. Then prove that $\angle PFA=\angle OFC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
duanby
76 posts
#13 • 3 Y
Y by AlastorMoody, Adventure10, Mango247
MY SOLUTION:
Let P' be the reflection of P wrt CF then P' is the isogonal conjugate point of O wrt ACF
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vslmat
154 posts
#14 • 3 Y
Y by minlat7, Adventure10, Mango247
To avoid using the Butterfly theorem as well as advanced geometry, we can do this way:
Let $CF$ cuts the circumcircle at $D$. On $AC$ let’s choose point $P'$ so that $\angle FAP' = \angle BAC$, $P'F$ cuts $BD$ at $Q$ and cuts the circumcirle at $M$ and $N$. Easy to see that $HP'\parallel BD$. As $DF = FH$ is a well known property, $QF = FP'$.
If we can prove that $P'M = NQ$ then $F$ is the midpoint of $MN$ and $OF\perp MN$, thus $P'\equiv P$ and we are done.
Now using sinus theorem we have
$\frac{P'C}{sinF_{1}} = \frac{FP'}{sinC_{1}} $ and $\frac{QD}{sinF_{1}} = \frac{QF}{sinD_{1}}$, thus $\frac{P'C}{QD} = \frac{sinD_{1}}{sinC_{1}}$. Similarly, we get $\frac{BQ}{AP'} = \frac{sinA_{1}}{sinB_{1}}$
Therefore, $\frac{BQ}{AP'} = \frac{P'C}{QD}$, or $BQ.QD = AP'. P'C$
But notice that $QD. BQ = NQ. QM$ and $AP'. P'C = P'M. P'N$, it follows that $NQ = P'M$
$F$ is indeed the midpoint of $MN$ and we are done.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
XmL
552 posts
#15 • 2 Y
Y by Adventure10, Mango247
Let the line through $O$ perpendicular to $AC$ meet $AC,CF,AB$ at $M,L,K$ respectively, thus $\angle OKA=90-\angle A=\angle ACF$ and $M$ is the midpoint of $AC$. From the first result we deduce that $\triangle ACF\sim \triangle LKF$. Since $\angle PFO=\angle CFA=90$, thus $\angle AFP=\angle LFO$, which means that $O,P$ are corresponding points concerning similar triangles $LKF$ and $ACF$. Now let $H'$ be the point that corresponds to $H$, thus $H'$ is on $FK$ and $\triangle FPH\sim \triangle FOH'$ $\Rightarrow$ we now just need to prove $\angle OH'F=\angle A=\angle MFA$ $\iff$ $OH'\parallel MF$ $\iff$ $\frac {MO}{OK}=\frac {FH'}{KH'}=\frac {FH}{CH}(*)$.
Since $\triangle AMK\sim \triangle AFC$ and $\angle HAF=\angle MAO$, thus $O,H$ are two corresponding points concerning those two triangles, which means that (*) is true. Q.E.D
This post has been edited 1 time. Last edited by XmL, Jul 12, 2013, 2:26 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IDMasterz
1412 posts
#16 • 2 Y
Y by Adventure10, Mango247
Let $DEF$ be the orthic triangle of $\triangle ABC$.Since $\angle (OF, AF) = \angle FPH$ and we already have that $O, H$ as isogonal wrt $\angle FAP$, we get $H, O$ are isogonal conjugates wrt $\triangle AFP$. If we let $M$ be the midpoint of $AC$, then note that $AH \perp FM$ (since they are the feet of the pedals from $O$). Now, $M$ is the centre of $DFAC$ so $\angle MFC = 90 - A$ so $\angle FHP = \angle BAC$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IDMasterz
1412 posts
#17 • 2 Y
Y by Adventure10, Mango247
@mathreyes

It is well-known that for two isogonal conjugates $X, Y$, we have $AX, BX, CX$ is perpendicular to the sides of the pedal triangles.

I realise now that my solution is basically the same as Luis's, sorry I posted on impulse hehe
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jred
290 posts
#18 • 2 Y
Y by AlastorMoody, Adventure10
duanby wrote:
MY SOLUTION:
Let P' be the reflection of P wrt CF then P' is the isogonal conjugate point of O wrt ACF
there's a typo, it should be $\triangle BCF$ instead of $\triangle ACF$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jayme
9805 posts
#19 • 2 Y
Y by Adventure10, Mango247
Dear Mathlinkers,

see

http://www.artofproblemsolving.com/community/c6t48f6h1167200_angle_equal

Sincerely
Jean-Louis
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Blast_S1
364 posts
#20 • 1 Y
Y by Adventure10
[asy]
size(8cm);
pair A=(0,0), B=(120,0), C=(34.5,140.9), F=(34.5,0), O=(60,60), P=(3.3,13.3), Q=(136,97.7), H=(34.5,20.9), X=(19.4,-14.5), Y=(34.4,-20.9);
label("$A$", A, SW);
label("$B$", B, SE);
label("$C$", C, NW);
label("$Q$", Q, NE);
label("$H$", H, NW);
label("$O$", O, NW);
label("$P$", P, NW);
label("$H_1$", X, SW);
label("$H_2$", Y, S);
draw(A--B--C--cycle, linewidth(0.5)+blue);
draw(circle(O, 60sqrt(2)), linewidth(0.4)+blue);
draw(C--F, linewidth(0.5)+blue);
draw(F--P, linewidth(0.5)+blue);
draw(X--O--F--cycle, linewidth(0.5)+red);
draw(F--Y--O, linewidth(0.5)+red);
draw(F--Q--C, linewidth(0.4)+dashed+blue);
draw(circle((17.2,2.8), 17.42), linewidth(0.4)+dashed+grey);
dot(A);
dot(B);
dot(C);
dot(F);
dot(O);
dot(P);
dot(Q);
dot(H);
dot(X);
dot(Y);
[/asy]
Let $H_1$ and $H_2$ be the reflections of $H$ over $\overline{PF}$ and $\overline{AB}$ respectively, and let $\theta=\angle BFO$. Clearly $\angle PFC=\angle PFH_1=\theta$ too.
Lemma: $H_1\in (ABC)$

Proof: It is well-known that $H_2\in(ABC)$, so it suffices to prove that $OH_1=OH_2$. Clearly, $H_1F=H_2F$, $OF=OF$, and
$$\angle OH_1F=90^\circ+\theta=\angle HFO,$$so $\triangle OFH_1\cong\triangle OFH_2\implies OH_1=OH_2$, as desired.
Now, let $Q$ be the second intersection of $\overline{H_1F}$ and $(ABC)$. Since $H_1F=H_2F$, we must have that $CF=QF$ as well. This yields that
$$\angle FCQ=\frac{180^\circ-\angle CFQ}{2}=\frac{180^\circ-(180^\circ-2\theta)}{2}=\theta=\angle AFP,$$or that $\overline{CQ}\parallel\overline{PF}$. Finally, this must mean that
$$\angle PAH_1=180^\circ-\angle CQF=180^\circ-\angle PFH_1,$$so $PAH_1F$ is cyclic and
$$\angle BAC=\angle FH_1P=\angle FHP.$$Yep...
This post has been edited 2 times. Last edited by Blast_S1, Jan 14, 2020, 10:16 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jayme
9805 posts
#21 • 2 Y
Y by Adventure10, Mango247
Dear Mathlinkers,

http://jl.ayme.pagesperso-orange.fr/Docs/Orthique%20encyclopedie%200.pdf p. 51...

Sincerely
Jean-Louis
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mercury_is_small
15 posts
#22 • 1 Y
Y by Adventure10
IMOSL 1996 G3 wrote:
Let $O$ be the circumcenter and $H$ the orthocenter of an acute-angled triangle $ABC$ such that $BC>CA$. Let $F$ be the foot of the altitude $CH$ of triangle $ABC$. The perpendicular to the line $OF$ at the point $F$ intersects the line $AC$ at $P$. Prove that $\measuredangle FHP=\measuredangle BAC$.

We use phantom points :)
Notations:
Let $P'$ be a point on $AC$ such that $\angle FHP'=\angle A$. Now, let $H'$ be the reflection of $H$ on $AB$. Let $\angle AFP'=x\implies \angle P'FH=90-x$. Let $X=H'B\cap P'F$.

Two line proof: :D
Clearly, $H'B\| P'H$ and so, $\triangle PHF\equiv \triangle XH'F$ and so, $F$ is the midpoint of $XP'$. Now, obviously sine rule in triangles $XH'F,XFB,AFP',FP'C$ gives power of $X=$ power of $P'$ and so, $XOP'$ is isosceles and thus, $\angle OFP'=90\implies P=P'$.
QED
This post has been edited 1 time. Last edited by Mercury_is_small, Dec 17, 2019, 1:04 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Bunrong123
79 posts
#23
Y by
Let $\Gamma$ be the circle with center $O$ of triangle $ABC$, Extend $CF$ intersect $\Gamma$ at $G$, $FP$ intersect $GB$ at $I$, and The point $F$ be a point on chord $DE$ of $\Gamma$ such that $OF \perp DE$.
Then We have $F$ is midpoint of $DE$
Since $AB$ intersect $GC$ at F
By Butterfly's Theorem,
We get $IF=IP$
Since $GBCA$ is cyclic quadrilateral of $\Gamma$
Implies $\angle{GBA}=\angle{GCA}$
$\angle{BGC}=\angle{BAC}$.
and $\angle{GCA}=\angle{FCA}=90^\circ -\angle{BAC}=\angle{ABH}=\angle{FBH} =\angle{GBA} = \angle{GBF}$
Since $GH \perp BF$
We deduce $GF=FH$
Then $\triangle{GFI} \cong \triangle{HFP}$ $(S.A.S)$
We obtained $\angle{BAC}=\angle{FGI}=\angle{FHP}$
The result Follows. $\blacksquare$
This post has been edited 1 time. Last edited by Bunrong123, May 18, 2020, 2:38 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jishnu4414l
155 posts
#24 • 1 Y
Y by ehuseyinyigit
Reflect $H$ over $AB$ to $H_C$. It is a very well known fact that $H_C$ lies on $(ABC)$.
Now let $PF$ meet $BH_C$ at $Q$. By Butterfly theorem, we have $PF$=$FQ$.
Now notice that $\triangle PFH \cong \triangle QFH_C$ by SAS congruency.
Thus $\angle CAB=\angle CH_CB=\angle FHP$. Our proof is thus complete.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1388 posts
#25
Y by
Observe that $\angle BAH = \angle BCH = \angle CAO = \angle BAO = 90^{\circ} - \angle ABC$. Now let $K$ be a point on $AH$ such that $\angle KCH = \angle BCH$. Then $O$ and $K$ are isogonal conjugates in triangle $ACD$, thus $\angle ADO = \angle CDK$. On the other hand, $\angle ADO = 180^{\circ} - \angle EDO - \angle BDE = 90^{\circ} - \angle BDE = \angle CDE$. Hence $\angle CDK = \angle CDE$ and together with $\angle KCD = \angle ECD$ it follows that $\triangle KCD \cong \triangle ECD$ and that $CD$ is the perpendicular bisector of $KE$. But then $\angle DHE = \angle DHK = 90^{\circ} - \angle BAH = \angle ABC$ and we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
LeYohan
65 posts
#26
Y by
This is direct use of Butterfly Thorem.

Let $H'$ be the reflection of $H$ over $AB$ which we know lies on $(ABC)$. Let the line $FP$ intersect $(ABC)$ at $X, Y$. Because $O \perp FP$ it's clear that $F$ is the midpoint of $XY$. Let $Z$ be the intersection of $H'$ and $B$, then using Butterfly Theorem we know that $FP=FZ$. Now because $H'$ is the reflection of $H$ over $AB$, we know $H'F=FH$ so $H'BHP$ is a parallelogram $\implies H'B \parallel HP \implies \angle BAC = \angle CH'B = \angle FHP$ and we're done. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Double07
94 posts
#27 • 2 Y
Y by HotSinglesInYourArea, Calamarul
Nice bashing here we goooooooooooo:

Take $(ABC)$ the unit circle. Then
$h=a+b+c$ and $f=\dfrac{ab+bc+c^2-ab}{2c}$

The equation of line $OF$ is $\overline{z}=\dfrac{\overline{f}}{f}\cdot z=\dfrac{ab+bc+ca-c^2}{ab(ac+bc+c^2-ab)}\cdot z$.

Consider $X$ and $Y$ the two intersections of line $OF$ with the unit circle.
Then $x$ and $y$ are the solutions of the equation $\dfrac{1}{z}=\dfrac{ab+bc+ca-c^2}{ab(ac+bc+c^2-ab)}\cdot z\iff z^2=\dfrac{ab(ac+bc+c^2-ab)}{ab+bc+ca-c^2}$, which by Viete's implies that $x+y=0$ and $x\cdot y=-\dfrac{ab(ac+bc+c^2-ab)}{ab+bc+ca-c^2}$.

$P\in AC\iff P$ is its own projection on chord $AC\iff p=a+c-ac\overline{p}$.
$OF\perp FP\iff F$ is the projection of $P$ on chord $XY\iff f=\dfrac{1}{2}(p+x+y-xy\overline{p})\iff$
$\iff\dfrac{ac+bc+c^2-ab}{c}=a+c-(ac+xy)\overline{p}\iff \dfrac{bc-ab}{c}=-(ac+xy)\overline{p}\iff$
$\iff \left(ac-\dfrac{ab(ac+bc+c^2-ab)}{ab+bc+ca-c^2}\right)\overline{p}=\dfrac{b(a-c)}{c}\iff \dfrac{a(a-c)(b^2+c^2)}{ab+bc+ca-c^2}\cdot \overline{p}=\dfrac{b(a-c)}{c}\iff$
$\iff \overline{p}=\dfrac{b(ab+bc+ca-c^2)}{ac(b^2+c^2)}\iff p=\dfrac{c(ac+bc+c^2-ab}{b^2+c^2}$.

Ok, now we just need to prove the angle condition, which is equivallent to proving that $\widehat{BAC}+\widehat{CHP}=180^\circ\iff \dfrac{b-a}{c-a}\cdot\dfrac{c-h}{p-h}\in \mathbb{R}$
But $c-h=-a-b$ and $p-h=\dfrac{ac^2+bc^2+c^3-abc}{b^2+c^2}-a-b-c=\dfrac{-abc-ab^2-b^2c-b^3}{b^2+c^2}=(-b)\cdot\dfrac{(a+b)(b+c)}{b^2+c^2}$, so

$\dfrac{b-a}{c-a}\cdot\dfrac{c-h}{p-h}=\dfrac{b-a}{c-a}\cdot\dfrac{b^2+c^2}{b(b+c)}$, which is clearly real after conjugating, so we're done.
Z K Y
N Quick Reply
G
H
=
a