Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
inequality
danilorj   1
N 9 minutes ago by arqady
Let $a, b, c$ be nonnegative real numbers such that $a + b + c = 3$. Prove that
\[
\frac{a}{4 - b} + \frac{b}{4 - c} + \frac{c}{4 - a} + \frac{1}{16}(1 - a)^2(1 - b)^2(1 - c)^2 \leq 1,
\]and determine all such triples $(a, b, c)$ where the equality holds.
1 reply
danilorj
Yesterday at 9:08 PM
arqady
9 minutes ago
Iran geometry
Dadgarnia   23
N 25 minutes ago by Ilikeminecraft
Source: Iranian TST 2018, first exam, day1, problem 3
In triangle $ABC$ let $M$ be the midpoint of $BC$. Let $\omega$ be a circle inside of $ABC$ and is tangent to $AB,AC$ at $E,F$, respectively. The tangents from $M$ to $\omega$ meet $\omega$ at $P,Q$ such that $P$ and $B$ lie on the same side of $AM$. Let $X \equiv PM \cap BF $ and $Y \equiv QM \cap CE $. If $2PM=BC$ prove that $XY$ is tangent to $\omega$.

Proposed by Iman Maghsoudi
23 replies
Dadgarnia
Apr 7, 2018
Ilikeminecraft
25 minutes ago
Dou Fang Geometry in Taiwan TST
Li4   9
N 25 minutes ago by WLOGQED1729
Source: 2025 Taiwan TST Round 3 Mock P2
Let $\omega$ and $\Omega$ be the incircle and circumcircle of the acute triangle $ABC$, respectively. Draw a square $WXYZ$ so that all of its sides are tangent to $\omega$, and $X$, $Y$ are both on $BC$. Extend $AW$ and $AZ$, intersecting $\Omega$ at $P$ and $Q$, respectively. Prove that $PX$ and $QY$ intersects on $\Omega$.

Proposed by kyou46, Li4, Revolilol.
9 replies
Li4
Apr 26, 2025
WLOGQED1729
25 minutes ago
A4 BMO SHL 2024
mihaig   0
30 minutes ago
Source: Someone known
Let $a\ge b\ge c\ge0$ be real numbers such that $ab+bc+ca=3.$
Prove
$$3+\left(2-\sqrt 3\right)\cdot\frac{\left(b-c\right)^2}{b+\left(\sqrt 3-1\right)c}\leq a+b+c.$$Prove that if $k<\sqrt 3-1$ is a positive constant, then
$$3+\left(2-\sqrt 3\right)\cdot\frac{\left(b-c\right)^2}{b+kc}\leq a+b+c$$is not always true
0 replies
mihaig
30 minutes ago
0 replies
Find function
trito11   3
N Yesterday at 8:37 PM by jasperE3
Find $f:\mathbb{R^+} \to \mathbb{R^+} $ such that
i) f(x)>f(y) $\forall$ x>y>0
ii) f(2x)$\ge$2f(x)$\forall$x>0
iii)$f(f(x)f(y)+x)=f(xf(y))+f(x)$$\forall$x,y>0
3 replies
trito11
Nov 11, 2019
jasperE3
Yesterday at 8:37 PM
2024 Mock AIME 1 ** p15 (cheaters' trap) - 128 | n^{\sigma (n)} - \sigma(n^n)
parmenides51   1
N Yesterday at 8:09 PM by NamelyOrange
Let $N$ be the number of positive integers $n$ such that $n$ divides $2024^{2024}$ and $128$ divides
$$n^{\sigma (n)} - \sigma(n^n)$$where $\sigma (n)$ denotes the number of positive integers that divide $n$, including $1$ and $n$. Find the remainder when $N$ is divided by $1000$.
1 reply
parmenides51
Jan 29, 2025
NamelyOrange
Yesterday at 8:09 PM
Inequalities
sqing   2
N Yesterday at 7:59 PM by maromex
Let $ a,b,c>0 $ . Prove that
$$\frac{a+5b}{b+c}+\frac{b+5c}{c+a}+\frac{c+5a}{a+b}\geq 9$$$$ \frac{2a+11b}{b+c}+\frac{2b+11c}{c+a}+\frac{2c+11a}{a+b}\geq \frac{39}{2}$$$$ \frac{25a+147b}{b+c}+\frac{25b+147c}{c+a}+\frac{25c+147a}{a+b} \geq258$$
2 replies
sqing
Yesterday at 3:46 AM
maromex
Yesterday at 7:59 PM
Assam Mathematics Olympiad 2022 Category III Q14
SomeonecoolLovesMaths   2
N Yesterday at 7:21 PM by rachelcassano
The following sum of three four digits numbers is divisible by $75$, $7a71 + 73b7 + c232$, where $a, b, c$ are decimal digits. Find the necessary conditions in $a, b, c$.
2 replies
SomeonecoolLovesMaths
Sep 12, 2024
rachelcassano
Yesterday at 7:21 PM
2019 SMT Team Round - Stanford Math Tournament
parmenides51   19
N Yesterday at 5:21 PM by SomeonecoolLovesMaths
p1. Given $x + y = 7$, find the value of x that minimizes $4x^2 + 12xy + 9y^2$.


p2. There are real numbers $b$ and $c$ such that the only $x$-intercept of $8y = x^2 + bx + c$ equals its $y$-intercept. Compute $b + c$.



p3. Consider the set of $5$ digit numbers $ABCDE$ (with $A \ne 0$) such that $A+B = C$, $B+C = D$, and $C + D = E$. What’s the size of this set?


p4. Let $D$ be the midpoint of $BC$ in $\vartriangle ABC$. A line perpendicular to D intersects $AB$ at $E$. If the area of $\vartriangle ABC$ is four times that of the area of $\vartriangle BDE$, what is $\angle ACB$ in degrees?


p5. Define the sequence $c_0, c_1, ...$ with $c_0 = 2$ and $c_k = 8c_{k-1} + 5$ for $k > 0$. Find $\lim_{k \to \infty} \frac{c_k}{8^k}$.


p6. Find the maximum possible value of $|\sqrt{n^2 + 4n + 5} - \sqrt{n^2 + 2n + 5}|$.


p7. Let $f(x) = \sin^8 (x) + \cos^8(x) + \frac38 \sin^4 (2x)$. Let $f^{(n)}$ (x) be the $n$th derivative of $f$. What is the largest integer $a$ such that $2^a$ divides $f^{(2020)}(15^o)$?


p8. Let $R^n$ be the set of vectors $(x_1, x_2, ..., x_n)$ where $x_1, x_2,..., x_n$ are all real numbers. Let $||(x_1, . . . , x_n)||$ denote $\sqrt{x^2_1 +... + x^2_n}$. Let $S$ be the set in $R^9$ given by $$S = \{(x, y, z) : x, y, z \in R^3 , 1 = ||x|| = ||y - x|| = ||z -y||\}.$$If a point $(x, y, z)$ is uniformly at random from $S$, what is $E[||z||^2]$?


p9. Let $f(x)$ be the unique integer between $0$ and $x - 1$, inclusive, that is equivalent modulo $x$ to $\left( \sum^2_{i=0} {{x-1} \choose i} ((x - 1 - i)! + i!) \right)$. Let $S$ be the set of primes between $3$ and $30$, inclusive. Find $\sum_{x\in S}^{f(x)}$.


p10. In the Cartesian plane, consider a box with vertices $(0, 0)$,$\left( \frac{22}{7}, 0\right)$,$(0, 24)$,$\left( \frac{22}{7}, 4\right)$. We pick an integer $a$ between $1$ and $24$, inclusive, uniformly at random. We shoot a puck from $(0, 0)$ in the direction of $\left( \frac{22}{7}, a\right)$ and the puck bounces perfectly around the box (angle in equals angle out, no friction) until it hits one of the four vertices of the box. What is the expected number of times it will hit an edge or vertex of the box, including both when it starts at $(0, 0)$ and when it ends at some vertex of the box?


p11. Sarah is buying school supplies and she has $\$2019$. She can only buy full packs of each of the following items. A pack of pens is $\$4$, a pack of pencils is $\$3$, and any type of notebook or stapler is $\$1$. Sarah buys at least $1$ pack of pencils. She will either buy $1$ stapler or no stapler. She will buy at most $3$ college-ruled notebooks and at most $2$ graph paper notebooks. How many ways can she buy school supplies?


p12. Let $O$ be the center of the circumcircle of right triangle $ABC$ with $\angle ACB = 90^o$. Let $M$ be the midpoint of minor arc $AC$ and let $N$ be a point on line $BC$ such that $MN \perp BC$. Let $P$ be the intersection of line $AN$ and the Circle $O$ and let $Q$ be the intersection of line $BP$ and $MN$. If $QN = 2$ and $BN = 8$, compute the radius of the Circle $O$.


p13. Reduce the following expression to a simplified rational $$\frac{1}{1 - \cos \frac{\pi}{9}}+\frac{1}{1 - \cos \frac{5 \pi}{9}}+\frac{1}{1 - \cos \frac{7 \pi}{9}}$$

p14. Compute the following integral $\int_0^{\infty} \log (1 + e^{-t})dt$.


p15. Define $f(n)$ to be the maximum possible least-common-multiple of any sequence of positive integers which sum to $n$. Find the sum of all possible odd $f(n)$


PS. You should use hide for answers. Collected here.
19 replies
parmenides51
Feb 6, 2022
SomeonecoolLovesMaths
Yesterday at 5:21 PM
Complex Number Geometry
gauss202   1
N Yesterday at 3:08 PM by ANewName
Describe the locus of complex numbers, $z$, such that $\arg \left(\dfrac{z+i}{z-1} \right) = \dfrac{\pi}{4}$.
1 reply
gauss202
Yesterday at 12:21 PM
ANewName
Yesterday at 3:08 PM
Inequalities
sqing   5
N Yesterday at 2:49 PM by sqing
Let $a,b,c >2 $ and $ ab+bc+ca \leq 75.$ Show that
$$\frac{1}{a-2}+\frac{1}{b-2}+\frac{1}{c-2}\geq 1$$Let $a,b,c >2 $ and $ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{6}{7}.$ Show that
$$\frac{1}{a-2}+\frac{1}{b-2}+\frac{1}{c-2}\geq 2$$
5 replies
sqing
Tuesday at 11:31 AM
sqing
Yesterday at 2:49 PM
Trig Identity
gauss202   1
N Yesterday at 12:33 PM by Lankou
Simplify $\dfrac{1-\cos \theta + \sin \theta}{\sqrt{1 - \cos \theta + \sin \theta - \sin \theta \cos \theta}}$
1 reply
gauss202
Yesterday at 12:12 PM
Lankou
Yesterday at 12:33 PM
Trunk of cone
soruz   1
N Yesterday at 9:59 AM by Mathzeus1024
One hemisphere is putting a truncated cone, with the base circles hemisphere. How height should have truncated cone as its lateral area to be minimal side?
1 reply
soruz
May 6, 2015
Mathzeus1024
Yesterday at 9:59 AM
Inequalities
sqing   7
N Yesterday at 8:29 AM by sqing
Let $a,b,c >1 $ and $ \frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=1.$ Show that$$ab+bc+ca \geq 48$$$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq \frac{3}{4}$$Let $a,b,c >1 $ and $ \frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=2.$ Show that$$ab+bc+ca \geq \frac{75}{4}$$$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq \frac{6}{5}$$Let $a,b,c >1 $ and $ \frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=3.$ Show that$$ab+bc+ca \geq 12$$$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq \frac{3}{2}$$
7 replies
sqing
Tuesday at 9:04 AM
sqing
Yesterday at 8:29 AM
circumspheres intersect at one point
MRF2017   6
N Aug 20, 2017 by IvanBazarov
Source: All russian olympiad 2016,Day1,grade 11,P2
In the space given three segments $A_1A_2, B_1B_2$ and $C_1C_2$, do not lie in one plane and intersect at a point $P$. Let $O_{ijk}$ be center of sphere that passes through the points $A_i, B_j, C_k$ and $P$. Prove that $O_{111}O_{222}, O_{112}O_{221}, O_{121}O_{212}$ and$O_{211}O_{122}$ intersect at one point. (P.Kozhevnikov)
6 replies
MRF2017
May 1, 2016
IvanBazarov
Aug 20, 2017
circumspheres intersect at one point
G H J
G H BBookmark kLocked kLocked NReply
Source: All russian olympiad 2016,Day1,grade 11,P2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MRF2017
237 posts
#1 • 2 Y
Y by Adventure10, Mango247
In the space given three segments $A_1A_2, B_1B_2$ and $C_1C_2$, do not lie in one plane and intersect at a point $P$. Let $O_{ijk}$ be center of sphere that passes through the points $A_i, B_j, C_k$ and $P$. Prove that $O_{111}O_{222}, O_{112}O_{221}, O_{121}O_{212}$ and$O_{211}O_{122}$ intersect at one point. (P.Kozhevnikov)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
toto1234567890
889 posts
#2 • 3 Y
Y by vsathiam, Adventure10, Mango247
Very easy problem. :huh:
There are so many parallels here. :)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sansae
119 posts
#3 • 1 Y
Y by Adventure10
can i know the answer?

i solved it, but i think my way is too hard and hard to write
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rchokler
2975 posts
#4 • 1 Y
Y by Adventure10
How about using vectors. It can be shown that if the vertices of a tetrahedron are at $\mathbf{0,a,b,c}$, then the circumcenter is at:

\[\frac{(\mathbf{a\cdot a})(\mathbf{b\times c})+(\mathbf{b\cdot b})(\mathbf{c\times a})+(\mathbf{c\cdot c})(\mathbf{a\times b})}{12V}\]
where $V$ is the volume.


Now WLOG, assume that $A_2=-aA_1$, $B_2=-bB_1$, and $C_2=-cC_1$, where $a,b,c\in\mathbb{R}^+$ so that $P$ is at the origin. Then we have:

$O_{111}:\ \frac{(A_1\cdot A_1)(B_1\times C_1)+(B_1\cdot B_1)(C_1\times A_1)+(C_1\cdot C_1)(A_1\times B_1)}{12V_{111}}
$

$O_{222}:\ \frac{-a(A_1\cdot A_1)(B_1\times C_1)-b(B_1\cdot B_1)(C_1\times A_1)-c(C_1\cdot C_1)(A_1\times B_1)}{12V_{111}}$

Similarly for the other circumcenters. From this we see that the circumcenters are vertices of a parallelepiped and the four segments asked for are the body diagonals of that parallelepiped, so they are concurrent and even happen to bisect each other as well.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bobthesmartypants
4337 posts
#5 • 1 Y
Y by Adventure10
What a troll problem :maybe:
Lemma: the locus of points $O$ in space such that $OA=OB=OC$ for three points $A, B, C$ is the line passing through the circumcenter of $\triangle ABC$ perpendicular to the plane containing $\triangle ABC$.
Proof: the locus is the intersection of the planes perpendicular to the segments $AB, BC, CA$ passing through their midpoints, which is exactly the line described.
There does not remain much to be done. Since $A_1A_2\cap B_1B_2\ne \emptyset$, $A_1, A_2, B_1, B_2$ lie on a plane $\mathcal{P}_{12}$. Then by the lemma $O_{ij1}O_{ij2}\perp \mathcal{P}_{12}$ for all $i,j\in\{1,2\}$, so $O_{ij1}O_{ij2}\| O_{kl1}O_{kl2}$ for $i,j,k,l \in\{1,2\}$. This is true for planes $\mathcal{P}_{23}$ and $\mathcal{P}_{13}$ so in fact the solid created by all the circumcenters is just a rectangular prism. But we're done, since the space diagonals of a rectangular prism obviously intersect the center.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
solver6
259 posts
#6 • 2 Y
Y by Adventure10, Mango247
$\textbf{Proof :}$

Consider inversion wrt sphere with center at $P$. Let $A_1', A_2',\ldots , C_2'$ be images of points $A_1, A_2,\ldots , C_2$ respectively. Let spheres $(O_{ijk}), (O_{\bar{i}\bar{j}\bar{k}})$ intersect by circles $C_{ijk}$. To prove that lines $O_{ijk}O_{\bar{i}\bar{j}\bar{k}}$ are concurrent it's enough to prove that circles $C_{ijk}$ lie on the same sphere.

Consider intersection line $L_{ijk}$ of planes $<A_iB_jC_k>$ and $<A_{\bar{i}}B_{\bar{j}}C_{\bar{k}}>$. Line $L_{ijk}$ is image of circle $C_{ijk}$, so it's enough to prove that all lines $L_{ijk}$ lie on the same plane.

For any $i, j, k, p$ easy to see that lines $L_{ijk}$, $L_{ijp}$ intersect at point $A_iB_j\cap A_{\bar{i}}B_{\bar{j}}$. So any two line $L_{ijk}$, $L_{ijp}$ lie on the same plane. So all lines $L_{ijk}$ lie on the same plane. $\Box$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IvanBazarov
1 post
#7 • 3 Y
Y by Yuuhhuuuuuuu, Adventure10, Mango247
@bobthesmartypants
Actually, circumcenters create parallelepiped but solutions still works :-D
Z K Y
N Quick Reply
G
H
=
a