Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Number Theory Chain!
JetFire008   43
N 22 minutes ago by whwlqkd
I will post a question and someone has to answer it. Then they have to post a question and someone else will answer it and so on. We can only post questions related to Number Theory and each problem should be more difficult than the previous. Let's start!

Question 1
43 replies
JetFire008
Apr 7, 2025
whwlqkd
22 minutes ago
Prove that d >= p-1
tranthanhnam   14
N 27 minutes ago by Ilikeminecraft
Source: IMO Shortlist 1997, Q12
Let $ p$ be a prime number and $ f$ an integer polynomial of degree $ d$ such that $ f(0) = 0,f(1) = 1$ and $ f(n)$ is congruent to $ 0$ or $ 1$ modulo $ p$ for every integer $ n$. Prove that $ d\geq p - 1$.
14 replies
tranthanhnam
Aug 26, 2005
Ilikeminecraft
27 minutes ago
Quick NT
AndreiVila   3
N 30 minutes ago by Rohit-2006
Source: Mathematical Minds 2024 P1
Find all positive integers $n\geqslant 2$ such that $d_{i+1}/d_i$ is an integer for all $1\leqslant i < k$, where $1=d_1<d_2<\dots <d_k=n$ are all the positive divisors of $n$.

Proposed by Pavel Ciurea
3 replies
AndreiVila
Sep 29, 2024
Rohit-2006
30 minutes ago
Problem 3 IMO 2005 (Day 1)
Valentin Vornicu   120
N an hour ago by Nguyenhuyen_AG
Let $x,y,z$ be three positive reals such that $xyz\geq 1$. Prove that
\[ \frac { x^5-x^2 }{x^5+y^2+z^2} + \frac {y^5-y^2}{x^2+y^5+z^2} + \frac {z^5-z^2}{x^2+y^2+z^5} \geq 0 . \]
Hojoo Lee, Korea
120 replies
Valentin Vornicu
Jul 13, 2005
Nguyenhuyen_AG
an hour ago
prove that any quadrilateral satisfying this inequality is a trapezoid
mqoi_KOLA   3
N 2 hours ago by mqoi_KOLA
Prove that any Trapezoid/trapzium satisfies the given inequality$$
|r - p| < q + s < r + p
$$where $p,r$ are lengths of parallel sides and $q,s$ are other two sides.
3 replies
mqoi_KOLA
Yesterday at 3:48 AM
mqoi_KOLA
2 hours ago
Find the angle
Alfombraking   0
2 hours ago
Inside a right triangle ABC at , point Q is located, which belongs to the bisector of angle C. On the extension of BQ, point P is located from which PM⊥CQ(M en CQ) is drawn, such that BP=2(MC). If AQ=BC, then the measure of angle BAQ is.
0 replies
Alfombraking
2 hours ago
0 replies
IMO Problem 4
iandrei   105
N 2 hours ago by cj13609517288
Source: IMO ShortList 2003, geometry problem 1
Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.
105 replies
iandrei
Jul 14, 2003
cj13609517288
2 hours ago
NEPAL TST 2025 DAY 2
Tony_stark0094   5
N 3 hours ago by iStud
Consider an acute triangle $\Delta ABC$. Let $D$ and $E$ be the feet of the altitudes from $A$ to $BC$ and from $B$ to $AC$ respectively.

Define $D_1$ and $D_2$ as the reflections of $D$ across lines $AB$ and $AC$, respectively. Let $\Gamma$ be the circumcircle of $\Delta AD_1D_2$. Denote by $P$ the second intersection of line $D_1B$ with $\Gamma$, and by $Q$ the intersection of ray $EB$ with $\Gamma$.

If $O$ is the circumcenter of $\Delta ABC$, prove that $O$, $D$, and $Q$ are collinear if and only if quadrilateral $BCQP$ can be inscribed within a circle.

$\textbf{Proposed by Kritesh Dhakal, Nepal.}$
5 replies
Tony_stark0094
Yesterday at 8:40 AM
iStud
3 hours ago
USAMO 2003 Problem 4
MithsApprentice   71
N 3 hours ago by LeYohan
Let $ABC$ be a triangle. A circle passing through $A$ and $B$ intersects segments $AC$ and $BC$ at $D$ and $E$, respectively. Lines $AB$ and $DE$ intersect at $F$, while lines $BD$ and $CF$ intersect at $M$. Prove that $MF = MC$ if and only if $MB\cdot MD = MC^2$.
71 replies
MithsApprentice
Sep 27, 2005
LeYohan
3 hours ago
2025 Caucasus MO Seniors P2
BR1F1SZ   2
N 5 hours ago by MathLuis
Source: Caucasus MO
Let $ABC$ be a triangle, and let $B_1$ and $B_2$ be points on segment $AC$ symmetric with respect to the midpoint of $AC$. Let $\gamma_A$ denote the circle passing through $B_1$ and tangent to line $AB$ at $A$. Similarly, let $\gamma_C$ denote the circle passing through $B_1$ and tangent to line $BC$ at $C$. Let the circles $\gamma_A$ and $\gamma_C$ intersect again at point $B'$ ($B' \neq B_1$). Prove that $\angle ABB' = \angle CBB_2$.
2 replies
BR1F1SZ
Mar 26, 2025
MathLuis
5 hours ago
$2$ spheres of radius $1$ and $2$
khanh20   0
5 hours ago
Given $2$ spheres centered at $O$, with radius of $1$ and $2$, which is remarked as $S_1$ and $S_2$, respectively. Given $2024$ points $M_1,M_2,...,M_{2024}$ outside of $S_2$ (not including the surface of $S_2$).
Remark $T$ as the number of sets $\{M_i,M_j\}$ such that the midpoint of $M_iM_j$ lies entirely inside of $S_1$.
Find the maximum value of $T$
0 replies
khanh20
5 hours ago
0 replies
Trapezoid and squares
a_507_bc   10
N Yesterday at 11:20 PM by EHoTuK
Source: First Romanian JBMO TST 2023 P5
Outside of the trapezoid $ABCD$ with the smaller base $AB$ are constructed the squares $ADEF$ and $BCGH$. Prove that the perpendicular bisector of $AB$ passes through the midpoint of $FH$.
10 replies
a_507_bc
Apr 14, 2023
EHoTuK
Yesterday at 11:20 PM
Abelkonkurransen 2025 3b
Lil_flip38   2
N Yesterday at 10:48 PM by MathLuis
Source: abelkonkurransen
An acute angled triangle \(ABC\) has circumcenter \(O\). The lines \(AO\) and \(BC\) intersect at \(D\), while \(BO\) and \(AC\) intersect at \(E\) and \(CO\) and \(AB\) intersect at \(F\). Show that if the triangles \(ABC\) and \(DEF\) are similar(with vertices in that order), than \(ABC\) is equilateral.
2 replies
Lil_flip38
Mar 20, 2025
MathLuis
Yesterday at 10:48 PM
Abelkonkurransen 2025 3a
Lil_flip38   6
N Yesterday at 10:44 PM by MathLuis
Source: abelkonkurransen
Let \(ABC\) be a triangle. Let \(E,F\) be the feet of the altitudes from \(B,C\) respectively. Let \(P,Q\) be the projections of \(B,C\) onto line \(EF\). Show that \(PE=QF\).
6 replies
Lil_flip38
Mar 20, 2025
MathLuis
Yesterday at 10:44 PM
Concurrent perpendiculars in a rectangle
Steff9   3
N Jun 3, 2021 by JustKeepRunning
Source: JBMO Shortlist 2013, G6
Let $P$ and $Q$ be the midpoints of the sides $BC$ and $CD$, respectively in a rectangle $ABCD$. Let $K$ and $M$ be the intersections of the line $PD$ with the lines $QB$ and $QA$, respectively, and let $N$ be the intersection of the lines $PA$ and $QB$. Let $X$, $Y$ and $Z$ be the midpoints of the segments $AN$, $KN$ and $AM$, respectively. Let $\ell_1$ be the line passing through $X$ and perpendicular to $MK$, $\ell_2$ be the line passing through $Y$ and perpendicular to $AM$ and $\ell_3$ the line passing through $Z$ and perpendicular to $KN$. Prove that the lines $\ell_1$, $\ell_2$ and $\ell_3$ are concurrent.
3 replies
Steff9
Jun 11, 2017
JustKeepRunning
Jun 3, 2021
Concurrent perpendiculars in a rectangle
G H J
Source: JBMO Shortlist 2013, G6
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Steff9
58 posts
#1 • 3 Y
Y by celilcelil, Adventure10, Mango247
Let $P$ and $Q$ be the midpoints of the sides $BC$ and $CD$, respectively in a rectangle $ABCD$. Let $K$ and $M$ be the intersections of the line $PD$ with the lines $QB$ and $QA$, respectively, and let $N$ be the intersection of the lines $PA$ and $QB$. Let $X$, $Y$ and $Z$ be the midpoints of the segments $AN$, $KN$ and $AM$, respectively. Let $\ell_1$ be the line passing through $X$ and perpendicular to $MK$, $\ell_2$ be the line passing through $Y$ and perpendicular to $AM$ and $\ell_3$ the line passing through $Z$ and perpendicular to $KN$. Prove that the lines $\ell_1$, $\ell_2$ and $\ell_3$ are concurrent.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
celilcelil
164 posts
#2
Y by
We need to prove that XM² - XK² + KZ² - ZQ² + QY² - YM² = 0.
In triangle AMN MX is median. Then we can find value of XM² depending on the values of AM, AN, MN. Similarly we can find values of XK, KZ, YM from triangles AKN, AKM, MKN, respectively.
After rewrite it in the equation we find that we need to prove : AM² - KN² = 4( QZ² - QY²).
Let AZ = ZM = a, QM = b, NY = NK = C, QK = d. Rewrite it in the equation we find that
b(b + 2a) = d(d + 2c), which means AMKN is cyclic.
Then we need to prove that AMKN is cyclic.
Note that PA = PD.
<DAQ = <CBQ.
<PAD = <PDA = 90° - <PDC = <DPC. Then,
<BKP = <DPC - <CBQ = <PAD - <DAQ = <PAQ.
We are done!!!


I think it was very nice problem for JBMO.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Steff9
58 posts
#3
Y by
See Property 10.4.3 from the book A Beautiful Journey Through Olympiad Geometry attached below.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JustKeepRunning
2958 posts
#4
Y by
The problem reduces to the following claim

Claim: $ANKM$ is cyclic

Proof: Angle chase by letting $\angle ADP=\theta$ and $\angle DAQ=\alpha,$ and you get that $\angle ANQ=\angle QMK=180^{\circ}-\theta=\alpha$.

Once this is done, we know that the lines are concurrent, and in fact, by lemma above, the point of concurrency is even know. It is the reflection of the circumcenter of $ANKM$ over the intersection of the diagonals of its varigon gram.
Z K Y
N Quick Reply
G
H
=
a