Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
LCM genius problem from our favorite author
MS_Kekas   1
N 10 minutes ago by Tintarn
Source: Kyiv City MO 2022 Round 2, Problem 8.1
Find all triples $(a, b, c)$ of positive integers for which $a + [a, b] = b + [b, c] = c + [c, a]$.

Here $[a, b]$ denotes the least common multiple of integers $a, b$.

(Proposed by Mykhailo Shtandenko)
1 reply
MS_Kekas
Jan 30, 2022
Tintarn
10 minutes ago
IMO Solution mistake
CHESSR1DER   0
23 minutes ago
Source: Mistake in IMO 1982/1 4th solution
I found a mistake in 4th solution at IMO 1982/1. It gives answer $660$ and $661$. But right answer is only $660$. Should it be reported somewhere in Aops?
0 replies
+1 w
CHESSR1DER
23 minutes ago
0 replies
All the numbers to be zero after finitely many operations
orl   9
N an hour ago by User210790
Source: IMO Shortlist 1989, Problem 19, ILL 64
A natural number is written in each square of an $ m \times n$ chess board. The allowed move is to add an integer $ k$ to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.
9 replies
orl
Sep 18, 2008
User210790
an hour ago
A number theory problem
super1978   2
N 2 hours ago by Tintarn
Source: Somewhere
Let $a,b,n$ be positive integers such that $\sqrt[n]{a}+\sqrt[n]{b}$ is an integer. Prove that $a,b$ are both the $n$th power of $2$ positive integers.
2 replies
super1978
May 11, 2025
Tintarn
2 hours ago
No more topics!
prove ABCD is a parallelogram
N.T.TUAN   2
N May 25, 2007 by April
Source: 14-th Macedonian Mathematical Olympiad 2007
In a trapezoid $ABCD$ with a base $AD$, point $L$ is the orthogonal projection of $C$ on $AB$, and $K$ is the point on $BC$ such that $AK$ is perpendicular to $AD$. Let $O$ be the circumcenter of triangle $ACD$. Suppose that the lines $AK , CL$ and $DO$ have a common point. Prove that $ABCD$ is a parallelogram.
2 replies
N.T.TUAN
May 23, 2007
April
May 25, 2007
prove ABCD is a parallelogram
G H J
Source: 14-th Macedonian Mathematical Olympiad 2007
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
N.T.TUAN
3595 posts
#1 • 3 Y
Y by Adventure10 and 2 other users
In a trapezoid $ABCD$ with a base $AD$, point $L$ is the orthogonal projection of $C$ on $AB$, and $K$ is the point on $BC$ such that $AK$ is perpendicular to $AD$. Let $O$ be the circumcenter of triangle $ACD$. Suppose that the lines $AK , CL$ and $DO$ have a common point. Prove that $ABCD$ is a parallelogram.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BaBaK Ghalebi
1182 posts
#2 • 3 Y
Y by Adventure10, Mango247, and 1 other user
Im not sure if Im right or not...
let $W$ be the circumcircle of $ACD$ and let $T$ be the intersection of $CL,AK$,so $DO$ passes through $T$ and $\angle TAD=90$...
now we claim that $T$ is on the circumcircle of $ACD$
Click to reveal hidden text
so assume that $W$ passes through $T$,now we want to show that $AB \| CD$ so its sufficient to show that $\angle LBC=\angle BCD$...
from $LC \bot AB$ we get that $\angle BLC=90$ so in triangle $LBC$ we get that $\angle LBC+\angle LCB=90 (I)$...
also in $W$,DT is a diameter wo $\angle TCD=90$so $\angle BCD+\angle LCB=90 (II)$
now from $(I),(II)$ we get the result...
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
April
1270 posts
#3 • 3 Y
Y by Adventure10, Mango247, and 1 other user
Denote $M=AK\cap CL$, so $M\in DO$

In triangle $MAD$, we have: $\widehat{MAD}=90^\circ,\,O\in MD,\,OD=OA,$ so $OD=OA=OM$ thus $ADCM$ is cyclic.

So $\widehat{MCD}=90^\circ\Longrightarrow CD\perp CL\Longrightarrow AB\parallel CD$
Hence $ABCD$ is a parallelogram.
Z K Y
N Quick Reply
G
H
=
a