Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Jun 2, 2025
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Jun 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
XY is tangent to a fixed circle
a_507_bc   2
N a few seconds ago by math-olympiad-clown
Source: Baltic Way 2022/15
Let $\Omega$ be a circle, and $B, C$ are two fixed points on $\Omega$. Given a third point $A$ on $\Omega$, let $X$ and $Y$ denote the feet of the altitudes from $B$ and $C$, respectively, in the triangle $ABC$. Prove that there exists a fixed circle $\Gamma$ such that $XY$ is tangent to $\Gamma$ regardless of the choice of the point $A$.
2 replies
a_507_bc
Nov 12, 2022
math-olympiad-clown
a few seconds ago
Super easy problem
M11100111001Y1R   6
N 3 minutes ago by sami1618
Source: Iran TST 2025 Test 2 Problem 1
The numbers from 2 to 99 are written on a board. At each step, one of the following operations is performed:

$a)$ Choose a natural number \( i \) such that \( 2 \leq i \leq 89 \). If both numbers \( i \) and \( i+10 \) are on the board, erase both.

$b)$ Choose a natural number \( i \) such that \( 2 \leq i \leq 98 \). If both numbers \( i \) and \( i+1 \) are on the board, erase both.

By performing these operations, what is the maximum number of numbers that can be erased from the board?
6 replies
M11100111001Y1R
May 27, 2025
sami1618
3 minutes ago
Beware the degeneracies!
Rijul saini   7
N 6 minutes ago by Adywastaken
Source: India IMOTC 2025 Day 1 Problem 1
Let $a,b,c$ be real numbers satisfying $$\max \{a(b^2+c^2),b(c^2+a^2),c(a^2+b^2) \} \leqslant 2abc+1$$Prove that $$a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) \leqslant 6abc+2$$and determine all cases of equality.

Proposed by Shantanu Nene
7 replies
Rijul saini
Yesterday at 6:30 PM
Adywastaken
6 minutes ago
13th PMO Area Part 1 #17
scarlet128   1
N 9 minutes ago by scarlet128
Source: https://pmo.ph/wp-content/uploads/2014/08/13thPMO-Area_ver5.pdf
The number x is chosen randomly from the interval (0, 1]. Define y = floor of (log base 4(x)). Find the sum of the lengths of all subintervals of (0, 1] for which y is odd.
1 reply
scarlet128
24 minutes ago
scarlet128
9 minutes ago
Romanian Geo
oVlad   3
N 13 minutes ago by NuMBeRaToRiC
Source: Romania TST 2025 Day 1 P2
Let $ABC$ be a scalene acute triangle with incentre $I{}$ and circumcentre $O{}$. Let $AI$ cross $BC$ at $D$. On circle $ABC$, let $X$ and $Y$ be the mid-arc points of $ABC$ and $BCA$, respectively. Let $DX{}$ cross $CI{}$ at $E$ and let $DY{}$ cross $BI{}$ at $F{}$. Prove that the lines $FX, EY$ and $IO$ are concurrent on the external bisector of $\angle BAC$.

David-Andrei Anghel
3 replies
+1 w
oVlad
Apr 9, 2025
NuMBeRaToRiC
13 minutes ago
inequality
SunnyEvan   2
N 14 minutes ago by sqing
Let $ x,y \geq 0 ,$ such that : $ \frac{x^2}{x^3+y}+\frac{y^2}{x+y^3} \leq 1 .$
Prove that : $$ x^2+y^2-xy \leq x+y $$$$ (x+\frac{1}{2})^2+(x+\frac{1}{2})^2 \leq \frac{5}{2} $$$$ (x+1)^2+(y+1)^2 \leq 5 $$$$ (x+2)^2+(y+2)^2 \leq 13 $$
2 replies
SunnyEvan
an hour ago
sqing
14 minutes ago
IMO 2011 Problem 5
orl   86
N 15 minutes ago by bjump
Let $f$ be a function from the set of integers to the set of positive integers. Suppose that, for any two integers $m$ and $n$, the difference $f(m) - f(n)$ is divisible by $f(m- n)$. Prove that, for all integers $m$ and $n$ with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$.

Proposed by Mahyar Sefidgaran, Iran
86 replies
orl
Jul 19, 2011
bjump
15 minutes ago
11th PMO Nationals, Easy #5
scarlet128   1
N 17 minutes ago by Mathzeus1024
Source: https://pmo.ph/wp-content/uploads/2020/12/11th-PMO-Questions.pdf
Solve for x : 2(floor of x) = x + 2{x}
1 reply
scarlet128
2 hours ago
Mathzeus1024
17 minutes ago
Cute Geometry
EthanWYX2009   0
25 minutes ago
In triangle \( X_AX_BX_C \), let \( X \) and \( Y \) be a pair of isogonal conjugate points. The line \( XX_A \) intersects \( X_BX_C \) at \( P \), and the line \( XY \) intersects \( X_BX_C \) at \( Q \). Let the circumcircle of \( XX_BX_C \) and the circumcircle of \( XPQ \) intersect again at \( R \) (other than \( X \)). Prove that the line \( RX \) bisects \( \angle PRX_A \).
IMAGE
0 replies
EthanWYX2009
25 minutes ago
0 replies
Interior point of ABC
Jackson0423   0
27 minutes ago
Let D be an interior point of the acute triangle ABC with AB > AC so that ∠DAB = ∠CAD. The point E on the segment AC satisfies ∠ADE = ∠BCD, the point F on the segment AB satisfies ∠F DA = ∠DBC, and the point X on the line AC satisfies CX = BX. Let O1 and O2 be the circumcenters of the triangles ADC and EXD, respectively. Prove that the lines BC, EF, and O1O2 are concurrent
0 replies
Jackson0423
27 minutes ago
0 replies
Dominoes and polygons
NO_SQUARES   0
29 minutes ago
Source: Kvant 2025, no.4 M2841; 46th Tot
Alice paints each cell of a $2m \times 2n$ board black or white so that the cells of each color form a polygon. Then Bob dissects the board into dominoes (rectangles consisting of two cells). Alice wants to maximize the number of two-colored dominoes, and Bob wishes to minimize it. What maximal number of two-colored dominoes can be guaranteed by Alice regardless of Bob’s moves? (Recall that the boundary of a polygon is a closed broken line without self-intersections.)
A. Gribalko
0 replies
NO_SQUARES
29 minutes ago
0 replies
complex variables inequality
RainbowNeos   1
N 30 minutes ago by RainbowNeos
Given complex numbers $a,b,c$. If
\[|a+b+c|=|ab+bc+ca|=|abc|=1,\]show that $|a|\leq 3|b|$.
1 reply
RainbowNeos
34 minutes ago
RainbowNeos
30 minutes ago
Bisectors in BHC,... Find \alpha+\beta+\gamma
NO_SQUARES   0
32 minutes ago
Source: Kvant 2025, no.4 M2840; 46th Tot
The altitudes $AA_1$, $BB_1$, $CC_1$ of an acute-angled triangle $ABC$ intersect at point $H$. The bisectors of angles $B$ and $C$ of triangle $BHC$ meet the segments $CH$ and $BH$ at points $X$ and $Y$ respectively. Denote the value of the angle $XA_1Y$ by $\alpha$. Define $\beta$ and $\gamma$ similarly. Find the sum $\alpha+\beta+\gamma$.
A. Doledenok
0 replies
NO_SQUARES
32 minutes ago
0 replies
What the isogonal conjugate on IO
reni_wee   0
33 minutes ago
Source: buratinogigle
Given a triangle $ABC$ with incircle $(I)$ tangent to $BC, CA, AB$ at points $D, E, F$, respectively. Let $P$ be a point such that its isogonal conjugate lies on the line $OI$ (where $O$ is the circumcenter and $I$ the incenter of $ABC$). The line $PA$ intersects segments $DE$ and $DF$ at points $M_a$ and $N_a$, respectively, such that the circle with diameter $M_a N_a$ meets $BC$ at points $P_a$ and $Q_a$.

1) Prove that the circle $(AP_a Q_a)$ is tangent to the incircle $(I)$ at some point $X$.

2) Similarly define points $Y, Z$ corresponding to vertices $B, C$. Prove that the lines $AX, BY, CZ$ are concurrent.
0 replies
reni_wee
33 minutes ago
0 replies
Inequality for circumcircle radius of the triangle XYZ
orl   2
N Aug 16, 2014 by pohoatza
Source: AIMO 2008, TST 5, P2, Suggested by Gunther Vogel
For three points $ X,Y,Z$ let $ R_{XYZ}$ be the circumcircle radius of the triangle $ XYZ.$ If $ ABC$ is a triangle with incircle centre $ I$ then we have:

\[ \frac{1}{R_{ABI}} + \frac{1}{R_{BCI}} + \frac{1}{R_{CAI}} \leq \frac{1}{\bar{AI}} + \frac{1}{\bar{BI}} + \frac{1}{\bar{CI}}.\]
2 replies
orl
Jan 4, 2009
pohoatza
Aug 16, 2014
Inequality for circumcircle radius of the triangle XYZ
G H J
Source: AIMO 2008, TST 5, P2, Suggested by Gunther Vogel
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
orl
3647 posts
#1 • 2 Y
Y by Adventure10, Mango247
For three points $ X,Y,Z$ let $ R_{XYZ}$ be the circumcircle radius of the triangle $ XYZ.$ If $ ABC$ is a triangle with incircle centre $ I$ then we have:

\[ \frac{1}{R_{ABI}} + \frac{1}{R_{BCI}} + \frac{1}{R_{CAI}} \leq \frac{1}{\bar{AI}} + \frac{1}{\bar{BI}} + \frac{1}{\bar{CI}}.\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
campos
411 posts
#2 • 4 Y
Y by TheBernuli, Adventure10, Mango247, and 1 other user
we have that $ AI=\dfrac{r}{\sin \frac{A}{2}}$ and $ R_{BCI}=2R\sin\frac{A}{2}$, then, the inequality is equivalent to

$ \dfrac{r}{2R}\sum\dfrac{1}{\sin \frac{A}{2}}\leq \sum \sin \frac{A}{2}$

recall that $ \dfrac{r}{R}=4\prod \sin\frac{A}{2}$... this implies that we have to prove that

$ 2\sum \sin\frac{B}{2}\sin\frac{C}{2} \leq \sum \sin\frac{A}{2}$

this one follows from the well-known inequalities $ (x+y+z)^2\geq3(xy+yz+zx)$ and $ \sum \sin\frac{A}{2}\leq \dfrac{3}{2}$, and we're done :D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pohoatza
1145 posts
#3 • 2 Y
Y by Adventure10, Mango247
It's actually an older problem of mine (?) that this is in fact true for any point $P$ inside triangle $ABC$ (not necessarily $P=I$).
Z K Y
N Quick Reply
G
H
=
a