Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Inequalities
sqing   2
N a minute ago by DAVROS
Let $a,b$ be real numbers such that $ a^2+b^2+a^3 +b^3=4   . $ Prove that
$$a+b \leq 2$$Let $a,b$ be real numbers such that $a+b + a^2+b^2+a^3 +b^3=6 . $ Prove that
$$a+b \leq 2$$
2 replies
sqing
Yesterday at 1:10 PM
DAVROS
a minute ago
Might be the first equation marathon
steven_zhang123   33
N 18 minutes ago by eric201291
As far as I know, it seems that no one on HSM has organized an equation marathon before. Click to reveal hidden textSo why not give it a try? Click to reveal hidden text Let's start one!
Some basic rules need to be clarified:
$\cdot$ If a problem has not been solved within $5$ days, then others are eligible to post a new probkem.
$\cdot$ Not only simple one-variable equations, but also systems of equations are allowed.
$\cdot$ The difficulty of these equations should be no less than that of typical quadratic one-variable equations. If the problem involves higher degrees or more variables, please ensure that the problem is solvable (i.e., has a definite solution, rather than an approximate one).
$\cdot$ Please indicate the domain of the solution to the equation (e.g., solve in $\mathbb{R}$, solve in $\mathbb{C}$).
Here's an simple yet fun problem, hope you enjoy it :P :
P1
33 replies
steven_zhang123
Jan 20, 2025
eric201291
18 minutes ago
Geometry
youochange   2
N 23 minutes ago by youochange
m:}
Let $\triangle ABC$ be a triangle inscribed in a circle, where the tangents to the circle at points $B$ and $C$ intersect at the point $P$. Let $M$ be a point on the arc $AC$ (not containing $B$) such that $M \neq A$ and $M \neq C$. Let the lines $BC$ and $AM$ intersect at point $K$. Let $P'$ be the reflection of $P$ with respect to the line $AM$. The lines $AP'$ and $PM$ intersect at point $Q$, and $PM$ intersects the circumcircle of $\triangle ABC$ again at point $N$.

Prove that the point $Q$ lies on the circumcircle of $\triangle ANK$.
2 replies
youochange
3 hours ago
youochange
23 minutes ago
Beautiful problem
luutrongphuc   20
N 27 minutes ago by r7di048hd3wwd3o3w58q
Let triangle $ABC$ be circumscribed about circle $(I)$, and let $H$ be the orthocenter of $\triangle ABC$. The circle $(I)$ touches line $BC$ at $D$. The tangent to the circle $(BHC)$ at $H$ meets $BC$ at $S$. Let $J$ be the midpoint of $HI$, and let the line $DJ$ meet $(I)$ again at $X$. The tangent to $(I)$ parallel to $BC$ meets the line $AX$ at $T$. Prove that $ST$ is tangent to $(I)$.
20 replies
+1 w
luutrongphuc
Apr 4, 2025
r7di048hd3wwd3o3w58q
27 minutes ago
A very nice inequality
KhuongTrang   1
N 33 minutes ago by Mathdreams
Source: own
Problem. Let $a,b,c\in \mathbb{R}:\ a+b+c=3.$ Prove that $$\color{black}{\sqrt{5a^{2}-ab+5b^{2}}+\sqrt{5b^{2}-bc+5c^{2}}+\sqrt{5c^{2}-ca+5a^{2}}\le 2(a^2+b^2+c^2)+ab+bc+ca.}$$When does equality hold?
1 reply
1 viewing
KhuongTrang
an hour ago
Mathdreams
33 minutes ago
Stereotypical Diophantine Equation
Mathdreams   2
N 37 minutes ago by grupyorum
Source: 2025 Nepal Mock TST Day 2 Problem 1
Find all solutions in the nonnegative integers to $2^a3^b5^c7^d - 1 = 11^e$.

(Shining Sun, USA)
2 replies
Mathdreams
an hour ago
grupyorum
37 minutes ago
Common tangent to diameter circles
Stuttgarden   1
N an hour ago by jrpartty
Source: Spain MO 2025 P2
The cyclic quadrilateral $ABCD$, inscribed in the circle $\Gamma$, satisfies $AB=BC$ and $CD=DA$, and $E$ is the intersection point of the diagonals $AC$ and $BD$. The circle with center $A$ and radius $AE$ intersects $\Gamma$ in two points $F$ and $G$. Prove that the line $FG$ is tangent to the circles with diameters $BE$ and $DE$.
1 reply
Stuttgarden
Mar 31, 2025
jrpartty
an hour ago
Two Functional Inequalities
Mathdreams   2
N an hour ago by kokcio
Source: 2025 Nepal Mock TST Day 2 Problem 2
Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(x) \le x^3$$and $$f(x + y) \le f(x) + f(y) + 3xy(x + y)$$for any real numbers $x$ and $y$.

(Miroslav Marinov, Bulgaria)
2 replies
Mathdreams
an hour ago
kokcio
an hour ago
FE with a lot of terms
MrHeccMcHecc   0
an hour ago
Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x,y \in \mathbb{R}$ $$f(x)f(y)+f(x+y)=xf(y)+yf(x)+f(xy)+x+y+1$$
0 replies
MrHeccMcHecc
an hour ago
0 replies
Sum of Squares of Digits is Periodic
Mathdreams   1
N an hour ago by kokcio
Source: 2025 Nepal Mock TST Day 1 Problem 2
For any positive integer $n$, let $f(n)$ denote the sum of squares of digits of $n$. Prove that the sequence $$f(n), f(f(n)), f(f(f(n))), \cdots$$is eventually periodic.

(Kritesh Dhakal, Nepal)
1 reply
Mathdreams
an hour ago
kokcio
an hour ago
Set Combo <-> Grid Combo
Mathdreams   0
an hour ago
Source: 2025 Nepal Mock TST Day 2 Problem 3
Consider an $n \times n$ grid, where $n$ is a composite integer.

The $n^2$ unit squares are divided up into $a$ disjoint sets of $b$ unit squares arbitrarily such that $ab = n^2$. Denote this family of sets as $S$.

The $n^2$ unit squares are again divided up into $c$ disjoint sets of $d$ unit squares arbitrarily such that $cd = n^2$. Denote this family of sets as $T$.

Is it necessarily possible to choose $\min(a,c)$ unit squares such that no two unit squares are in the same set of $S$ or the same set of $T$?

(Shining Sun, USA)
0 replies
Mathdreams
an hour ago
0 replies
Inspired by 2012 Romania and 2021 BH
sqing   0
an hour ago
Source: Own
Let $ a, b, c, d\geq 0 , bc + d + a = 5, cd + a + b = 2 $ and $ da + b + c = 6. $ Prove that
$$3\leq  ab + c + d\leq 2\sqrt{13}-1 $$$$5\leq a+ b+ c +d  \leq\frac{1}{2}(11+\sqrt{13})$$$$ \sqrt{13}+1  \leq   a b +bc+ c d+d a \leq 6$$
0 replies
sqing
an hour ago
0 replies
Inequalities
hn111009   6
N an hour ago by Arbelos777
Let $a,b,c>0$ satisfied $a^2+b^2+c^2=9.$ Find the minimum of $$P=\dfrac{a}{bc}+\dfrac{2b}{ca}+\dfrac{5c}{ab}.$$
6 replies
hn111009
Today at 1:25 AM
Arbelos777
an hour ago
Inequalities
nhathhuyyp5c   2
N an hour ago by sqing
Prove that for all positive real numbers \( a, b, c \), the following inequality holds:

\[
\sqrt{a + b} + \sqrt{b + c} + \sqrt{c + a} \geq \frac{4(ab + bc + ca)}{\sqrt{(a + b)(b + c)(c + a)}}
\]
2 replies
nhathhuyyp5c
Today at 4:45 AM
sqing
an hour ago
interesting trig + combo hybrid
happypi31415   2
N Mar 29, 2025 by happypi31415
Aaron writes the product \[\left(-\cos(1^{\circ})\right)\left(-\cos(2^{\circ})\right)\left(-\cos(4^{\circ})\right) \cdots \left(-\cos{(256^{\circ})}\right)\]on a blackboard. Then, he erases each term on the blackboard with probability $\frac{1}{2}$. What is the expected value of the remaining expression?
2 replies
happypi31415
Mar 28, 2025
happypi31415
Mar 29, 2025
interesting trig + combo hybrid
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
happypi31415
740 posts
#1
Y by
Aaron writes the product \[\left(-\cos(1^{\circ})\right)\left(-\cos(2^{\circ})\right)\left(-\cos(4^{\circ})\right) \cdots \left(-\cos{(256^{\circ})}\right)\]on a blackboard. Then, he erases each term on the blackboard with probability $\frac{1}{2}$. What is the expected value of the remaining expression?
This post has been edited 1 time. Last edited by happypi31415, Mar 28, 2025, 5:56 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
joeym2011
475 posts
#2 • 2 Y
Y by aidan0626, happypi31415
The expected value equals
$$\frac1{2^9}(1-\cos1^{\circ})(1-\cos2^{\circ})\cdots(1-\cos256^{\circ})=((\sin0.5^{\circ})(\sin1^{\circ})(\sin2^{\circ})\cdots(\sin128^{\circ}))^2.$$It can't seem to be simplified further.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
happypi31415
740 posts
#3
Y by
joeym2011 wrote:
The expected value equals
$$\frac1{2^9}(1-\cos1^{\circ})(1-\cos2^{\circ})\cdots(1-\cos256^{\circ})=((\sin0.5^{\circ})(\sin1^{\circ})(\sin2^{\circ})\cdots(\sin128^{\circ}))^2.$$It can't seem to be simplified further.

oh no you're right :blush: i thought that after you could try multiplying by $\left(\frac{\cos(0.5)}{\cos(0.5)}\right)^2$ but it doesn't work :(

getting it to the sin product was the main point i had in mind, though. thanks for trying it out :)
This post has been edited 1 time. Last edited by happypi31415, Mar 29, 2025, 2:53 PM
Z K Y
N Quick Reply
G
H
=
a