Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Interesting inequalities
sqing   4
N a few seconds ago by pooh123
Source: Own
Let $a,b,c \geq 0 $ and $ab+bc+ca- abc =3.$ Show that
$$a+k(b+c)\geq 2\sqrt{3 k}$$Where $ k\geq 1. $
Let $a,b,c \geq 0 $ and $2(ab+bc+ca)- abc =31.$ Show that
$$a+k(b+c)\geq \sqrt{62k}$$Where $ k\geq 1. $
4 replies
sqing
May 16, 2025
pooh123
a few seconds ago
JBMO Shortlist 2023 N2
Orestis_Lignos   5
N 2 minutes ago by Just1
Source: JBMO Shortlist 2023, N2
A positive integer is called Tiranian if it can be written as $x^2+6xy+y^2$, where $x$ and $y$ are (not necessarily distinct) positive integers. The integer $36^{2023}$ is written as the sum of $k$ Tiranian integers. What is the smallest possible value of $k$?

Proposed by Miroslav Marinov, Bulgaria
5 replies
Orestis_Lignos
Jun 28, 2024
Just1
2 minutes ago
Inequality on non-nagative numbers
TUAN2k8   3
N 4 minutes ago by sqing
Source: My book
Let $a,b,c$ be non-nagative real numbers such that $a+b+c=3$.
Prove that $ab+bc+ca-abc \leq \frac{9}{4}$.
3 replies
TUAN2k8
an hour ago
sqing
4 minutes ago
2-var inequality
sqing   2
N 13 minutes ago by sqing
Source: Own
Let $ a,b>0,  ab^2+a+2b\geq4  $. Prove that$$  \frac{a}{2a+b^2}+\frac{2}{a+2}\leq 1$$
2 replies
1 viewing
sqing
Today at 6:16 AM
sqing
13 minutes ago
Symmedian line
April   92
N 33 minutes ago by zuat.e
Source: All Russian Olympiad - Problem 9.2, 10.2
Let be given a triangle $ ABC$ and its internal angle bisector $ BD$ $ (D\in BC)$. The line $ BD$ intersects the circumcircle $ \Omega$ of triangle $ ABC$ at $ B$ and $ E$. Circle $ \omega$ with diameter $ DE$ cuts $ \Omega$ again at $ F$. Prove that $ BF$ is the symmedian line of triangle $ ABC$.
92 replies
April
May 10, 2009
zuat.e
33 minutes ago
Probably a good lemma
Zavyk09   0
an hour ago
Source: found when solving exercises
Let $ABC$ be a triangle with circumcircle $\omega$. Arbitrary points $E, F$ on $AC, AB$ respectively. Circumcircle $\Omega$ of triangle $AEF$ intersects $\omega$ at $P \ne A$. $BE$ intersects $CF$ at $I$. $PI$ cuts $\Omega$ and $\omega$ at $K, L$ respectively. Construct parallelogram $QFRE$. Prove that $A, R, P$ are collinear.
0 replies
Zavyk09
an hour ago
0 replies
Gergonne point Harmonic quadrilateral
niwobin   2
N an hour ago by Lil_flip38
Triangle ABC has incircle touching the sides at D, E, F as shown.
AD, BE, CF concurrent at Gergonne point G.
BG and CG cuts the incircle at X and Y, respectively.
AG cuts the incircle at K.
Prove: K, X, D, Y form a harmonic quadrilateral. (KX/KY = DX/DY)
2 replies
niwobin
Yesterday at 8:17 PM
Lil_flip38
an hour ago
Incircle in an isoscoles triangle
Sadigly   2
N an hour ago by Sadigly
Source: own
Let $ABC$ be an isosceles triangle with $AB=AC$, and let $I$ be its incenter. Incircle touches sides $BC,CA,AB$ at $D,E,F$, respectively. Foot of altitudes from $E,F$ to $BC$ are $X,Y$ , respectively. Rays $XI,YI$ intersect $(ABC)$ at $P,Q$, respectively. Prove that $(PQD)$ touches incircle at $D$.
2 replies
Sadigly
Friday at 9:21 PM
Sadigly
an hour ago
Prove that the triangle is isosceles.
TUAN2k8   7
N 2 hours ago by TUAN2k8
Source: My book
Given acute triangle $ABC$ with two altitudes $CF$ and $BE$.Let $D$ be the point on the line $CF$ such that $DB \perp BC$.The lines $AD$ and $EF$ intersect at point $X$, and $Y$ is the point on segment $BX$ such that $CY \perp BY$.Suppose that $CF$ bisects $BE$.Prove that triangle $ACY$ is isosceles.
7 replies
TUAN2k8
May 16, 2025
TUAN2k8
2 hours ago
Locus of Mobile points on Circle and Square
Kunihiko_Chikaya   1
N 2 hours ago by Mathzeus1024
Source: 2012 Hitotsubashi University entrance exam, problem 4
In the $xyz$-plane given points $P,\ Q$ on the planes $z=2,\ z=1$ respectively. Let $R$ be the intersection point of the line $PQ$ and the $xy$-plane.

(1) Let $P(0,\ 0,\ 2)$. When the point $Q$ moves on the perimeter of the circle with center $(0,\ 0,\ 1)$ , radius 1 on the plane $z=1$,
find the equation of the locus of the point $R$.

(2) Take 4 points $A(1,\ 1,\ 1) , B(1,-1,\ 1), C(-1,-1,\ 1)$ and $D(-1,\ 1,\ 1)$ on the plane $z=2$. When the point $P$ moves on the perimeter of the circle with center $(0,\ 0,\ 2)$ , radius 1 on the plane $z=2$ and the point $Q$ moves on the perimeter of the square $ABCD$, draw the domain swept by the point $R$ on the $xy$-plane, then find the area.
1 reply
Kunihiko_Chikaya
Feb 28, 2012
Mathzeus1024
2 hours ago
Circle is tangent to circumcircle and incircle
ABCDE   73
N 3 hours ago by AR17296174
Source: 2016 ELMO Problem 6
Elmo is now learning olympiad geometry. In triangle $ABC$ with $AB\neq AC$, let its incircle be tangent to sides $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. The internal angle bisector of $\angle BAC$ intersects lines $DE$ and $DF$ at $X$ and $Y$, respectively. Let $S$ and $T$ be distinct points on side $BC$ such that $\angle XSY=\angle XTY=90^\circ$. Finally, let $\gamma$ be the circumcircle of $\triangle AST$.

(a) Help Elmo show that $\gamma$ is tangent to the circumcircle of $\triangle ABC$.

(b) Help Elmo show that $\gamma$ is tangent to the incircle of $\triangle ABC$.

James Lin
73 replies
ABCDE
Jun 24, 2016
AR17296174
3 hours ago
A very beautiful geo problem
TheMathBob   4
N 3 hours ago by ravengsd
Source: Polish MO Finals P2 2023
Given an acute triangle $ABC$ with their incenter $I$. Point $X$ lies on $BC$ on the same side as $B$ wrt $AI$. Point $Y$ lies on the shorter arc $AB$ of the circumcircle $ABC$. It is given that $$\angle AIX = \angle XYA = 120^\circ.$$Prove that $YI$ is the angle bisector of $XYA$.
4 replies
TheMathBob
Mar 29, 2023
ravengsd
3 hours ago
incircle excenter midpoints
danepale   9
N 4 hours ago by Want-to-study-in-NTU-MATH
Source: Middle European Mathematical Olympiad T-6
Let the incircle $k$ of the triangle $ABC$ touch its side $BC$ at $D$. Let the line $AD$ intersect $k$ at $L \neq D$ and denote the excentre of $ABC$ opposite to $A$ by $K$. Let $M$ and $N$ be the midpoints of $BC$ and $KM$ respectively.

Prove that the points $B, C, N,$ and $L$ are concyclic.
9 replies
danepale
Sep 21, 2014
Want-to-study-in-NTU-MATH
4 hours ago
geometry
gggzul   0
4 hours ago
Let $ABC$ be a triangle with $\angle ACB=90^{\circ}$. $D$ is the midpoint of $AC$. Let the angle bisector of $\angle ACB$ cut $BD$ at $P$ and $G$ be the centroid of $ABC$. $(CPG)$ meets $BC$ at $Q\ne C$ and $R$ is the projection of $Q$ onto $AB$. Prove that $R, G, P, A$ lie on a common circle.
0 replies
gggzul
4 hours ago
0 replies
Geometric inequality problem
mathlover1231   1
N Apr 10, 2025 by Double07
Given an acute triangle ABC, where H and O are the orthocenter and circumcenter, respectively. Point K is the midpoint of segment AH, and ℓ is a line through O. Points P and Q are the projections of B and C onto ℓ. Prove that KP + KQ ≥BC
1 reply
mathlover1231
Apr 10, 2025
Double07
Apr 10, 2025
Geometric inequality problem
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathlover1231
7 posts
#1 • 1 Y
Y by sami1618
Given an acute triangle ABC, where H and O are the orthocenter and circumcenter, respectively. Point K is the midpoint of segment AH, and ℓ is a line through O. Points P and Q are the projections of B and C onto ℓ. Prove that KP + KQ ≥BC
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Double07
91 posts
#2 • 1 Y
Y by sami1618
Beautiful application of complex numbers:

Take $(ABC)$ the unit circle, so $|a|=|b|=|c|=1$. Suppose line $\ell$ cuts $(ABC)$ at points $z$ and $-z$.
Then $p=\frac{1}{2}(b+z-z+z^2\overline{b})=\dfrac{b^2+z^2}{2b}$, and similarly $q=\frac{c^2+z^2}{2c}$.

Also, since $h=a+b+c\implies k=\frac{2a+b+c}{2}$

So $KP=|k-p|=\frac{1}{2}\left|2a+b+c-\frac{b^2+z^2}{b}\right|=\frac{|2ab+bc-z^2|}{2|b|}=\frac{1}{2}|2ab+bc-z^2|$.

Similarly, $KQ=\frac{1}{2}|2ac+bc-z^2|$, so, by triangle inequality, we have $KP+KQ=\frac{1}{2}(|2ab+bc-z^2|+|z^2-bc-2ac|)\geq \frac{1}{2}|2ab-2ac|=|a|\cdot|b-c|=BC$, and we're done.
This post has been edited 1 time. Last edited by Double07, Apr 10, 2025, 7:39 PM
Z K Y
N Quick Reply
G
H
=
a