Plan ahead for the next school year. Schedule your class today!

G
Topic
First Poster
Last Poster
k a July Highlights and 2025 AoPS Online Class Information
jwelsh   0
Jul 1, 2025
We are halfway through summer, so be sure to carve out some time to keep your skills sharp and explore challenging topics at AoPS Online and our AoPS Academies (including the Virtual Campus)!

[list][*]Over 60 summer classes are starting at the Virtual Campus on July 7th - check out the math and language arts options for middle through high school levels.
[*]At AoPS Online, we have accelerated sections where you can complete a course in half the time by meeting twice/week instead of once/week, starting on July 8th:
[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC Problem Series[/list]
[*]Plus, AoPS Online has a special seminar July 14 - 17 that is outside the standard fare: Paradoxes and Infinity
[*]We are expanding our in-person AoPS Academy locations - are you looking for a strong community of problem solvers, exemplary instruction, and math and language arts options? Look to see if we have a location near you and enroll in summer camps or academic year classes today! New locations include campuses in California, Georgia, New York, Illinois, and Oregon and more coming soon![/list]

MOP (Math Olympiad Summer Program) just ended and the IMO (International Mathematical Olympiad) is right around the corner! This year’s IMO will be held in Australia, July 10th - 20th. Congratulations to all the MOP students for reaching this incredible level and best of luck to all selected to represent their countries at this year’s IMO! Did you know that, in the last 10 years, 59 USA International Math Olympiad team members have medaled and have taken over 360 AoPS Online courses. Take advantage of our Worldwide Online Olympiad Training (WOOT) courses
and train with the best! Please note that early bird pricing ends August 19th!
Are you tired of the heat and thinking about Fall? You can plan your Fall schedule now with classes at either AoPS Online, AoPS Academy Virtual Campus, or one of our AoPS Academies around the US.

Our full course list for upcoming classes is below:
All classes start 7:30pm ET/4:30pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Sunday, Oct 19 - Jan 25
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Sat & Sun, Sep 13 - Sep 14 (1:00 - 4:00 PM PT/4:00 - 7:00 PM ET)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Wednesday, Sep 24 - Dec 17

Precalculus
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Calculus
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT


Programming

Introduction to Programming with Python
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26
0 replies
1 viewing
jwelsh
Jul 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
IMO ShortList 2001, combinatorics problem 1
orl   34
N 14 minutes ago by eg4334
Source: IMO ShortList 2001, combinatorics problem 1
Let $A = (a_1, a_2, \ldots, a_{2001})$ be a sequence of positive integers. Let $m$ be the number of 3-element subsequences $(a_i,a_j,a_k)$ with $1 \leq i < j < k \leq 2001$, such that $a_j = a_i + 1$ and $a_k = a_j + 1$. Considering all such sequences $A$, find the greatest value of $m$.
34 replies
orl
Sep 30, 2004
eg4334
14 minutes ago
Perpendicularity
April   35
N 15 minutes ago by Schintalpati
Source: CGMO 2007 P5
Point $D$ lies inside triangle $ABC$ such that $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Point $E$ is the midpoint of segment $BC$. Point $F$ lies on segment $AC$ with $AF = 2FC$. Prove that $DE \perp EF$.
35 replies
April
Dec 28, 2008
Schintalpati
15 minutes ago
IMO Shortlist 2013, Geometry #2
lyukhson   81
N 19 minutes ago by lendsarctix280
Source: IMO Shortlist 2013, Geometry #2
Let $\omega$ be the circumcircle of a triangle $ABC$. Denote by $M$ and $N$ the midpoints of the sides $AB$ and $AC$, respectively, and denote by $T$ the midpoint of the arc $BC$ of $\omega$ not containing $A$. The circumcircles of the triangles $AMT$ and $ANT$ intersect the perpendicular bisectors of $AC$ and $AB$ at points $X$ and $Y$, respectively; assume that $X$ and $Y$ lie inside the triangle $ABC$. The lines $MN$ and $XY$ intersect at $K$. Prove that $KA=KT$.
81 replies
lyukhson
Jul 9, 2014
lendsarctix280
19 minutes ago
IMO Shortlist 2011, G1
WakeUp   46
N an hour ago by Kempu33334
Source: IMO Shortlist 2011, G1
Let $ABC$ be an acute triangle. Let $\omega$ be a circle whose centre $L$ lies on the side $BC$. Suppose that $\omega$ is tangent to $AB$ at $B'$ and $AC$ at $C'$. Suppose also that the circumcentre $O$ of triangle $ABC$ lies on the shorter arc $B'C'$ of $\omega$. Prove that the circumcircle of $ABC$ and $\omega$ meet at two points.

Proposed by Härmel Nestra, Estonia
46 replies
WakeUp
Jul 13, 2012
Kempu33334
an hour ago
orang NT
KevinYang2.71   23
N 2 hours ago by cubres
Source: ISL 2024 N1
Find all positive integers $n$ with the following property: for all positive divisors $d$ of $n$, we have $d+1\mid n$ or $d+1$ is prime.
23 replies
1 viewing
KevinYang2.71
Jul 16, 2025
cubres
2 hours ago
I am [not] a parallelogram
peppapig_   19
N 2 hours ago by sami1618
Source: ISL 2024/G4
Let $ABCD$ be a quadrilateral with $AB$ parallel to $CD$ and $AB<CD$. Lines $AD$ and $BC$ intersect at a point $P$. Point $X$ distinct from $C$ lies on the circumcircle of triangle $ABC$ such that $PC=PX$. Point $Y$ distinct from $D$ lies on the circumcircle of triangle $ABD$ such that $PD=PY$. Lines $AX$ and $BY$ intersect at $Q$.

Prove that $PQ$ is parallel to $AB$.

Fedir Yudin, Mykhailo Shtandenko, Anton Trygub, Ukraine
19 replies
peppapig_
Jul 16, 2025
sami1618
2 hours ago
CGMO6: Airline companies and cities
v_Enhance   16
N 2 hours ago by mudkip42
Source: 2012 China Girl's Mathematical Olympiad
There are $n$ cities, $2$ airline companies in a country. Between any two cities, there is exactly one $2$-way flight connecting them which is operated by one of the two companies. A female mathematician plans a travel route, so that it starts and ends at the same city, passes through at least two other cities, and each city in the route is visited once. She finds out that wherever she starts and whatever route she chooses, she must take flights of both companies. Find the maximum value of $n$.
16 replies
1 viewing
v_Enhance
Aug 13, 2012
mudkip42
2 hours ago
USAMO 1981 #2
Mrdavid445   11
N 2 hours ago by mudkip42
Every pair of communities in a county are linked directly by one mode of transportation; bus, train, or airplane. All three methods of transportation are used in the county with no community being serviced by all three modes and no three communities being linked pairwise by the same mode. Determine the largest number of communities in this county.
11 replies
Mrdavid445
Jul 26, 2011
mudkip42
2 hours ago
IMO Shortlist 2009 - Problem A2
April   95
N 2 hours ago by lpieleanu
Let $a$, $b$, $c$ be positive real numbers such that $\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = a+b+c$. Prove that:
\[\frac{1}{(2a+b+c)^2}+\frac{1}{(a+2b+c)^2}+\frac{1}{(a+b+2c)^2}\leq \frac{3}{16}.\]
Proposed by Juhan Aru, Estonia
95 replies
April
Jul 5, 2010
lpieleanu
2 hours ago
BMO 2024 SL C1
GreekIdiot   14
N 2 hours ago by Steff9
Let $n$, $k$ be positive integers. Julia and Florian play a game on a $2n \times 2n$ board. Julia
has secretly tiled the entire board with invisible dominos. Florian now chooses $k$ cells.
All dominos covering at least one of these cells then turn visible. Determine the minimal
value of $k$ such that Florian has a strategy to always deduce the entire tiling.
14 replies
GreekIdiot
Apr 27, 2025
Steff9
2 hours ago
Sharygin 2025 CR P15
Gengar_in_Galar   8
N 3 hours ago by SuperBarsh
Source: Sharygin 2025
A point $C$ lies on the bisector of an acute angle with vertex $S$. Let $P$, $Q$ be the projections of $C$ to the sidelines of the angle. The circle centered at $C$ with radius $PQ$ meets the sidelines at points $A$ and $B$ such that $SA\ne SB$. Prove that the circle with center $A$ touching $SB$ and the circle with center $B$ touching $SA$ are tangent.
Proposed by: A.Zaslavsky
8 replies
Gengar_in_Galar
Mar 10, 2025
SuperBarsh
3 hours ago
I miss Turbo
sarjinius   39
N 3 hours ago by InterLoop
Source: 2025 IMO P6
Consider a $2025\times2025$ grid of unit squares. Matilda wishes to place on the grid some rectangular tiles, possibly of different sizes, such that each side of every tile lies on a grid line and every unit square is covered by at most one tile.

Determine the minimum number of tiles Matilda needs to place so that each row and each column of the grid has exactly one unit square that is not covered by any tile.

Proposed by Zhao Yu Ma and David Lin Kewei, Singapore
39 replies
+1 w
sarjinius
Jul 16, 2025
InterLoop
3 hours ago
3 var inequality
ehuseyinyigit   8
N 3 hours ago by DipoleOfMonorak
Source: Own
Let $x,y,z$ be positive real numbers. Prove that

$$\dfrac{x^3+72xy^2}{z^3+x^2y}+\dfrac{y^3+72yz^2}{x^3+y^2z}+\dfrac{z^3+72zx^2}{y^3+z^2x}\geq \dfrac{15}{2}+\dfrac{102xyz(x+y+z)}{x^3y+y^3z+z^3x}$$
8 replies
ehuseyinyigit
Jul 21, 2025
DipoleOfMonorak
3 hours ago
diophantine with exponents and factorials
skellyrah   12
N 3 hours ago by skellyrah
Find all natural numbers $m$ such that $$ m^k - 3^k= m! - 6 $$for some natural number $k$
12 replies
skellyrah
Yesterday at 11:50 PM
skellyrah
3 hours ago
A Problem on a Rectangle
buratinogigle   0
Apr 16, 2025
Source: VN Math Olympiad For High School Students P11 - 2025 - Bonus, MM Problem 2197
Let $ABCD$ be a rectangle and $P$ any point. Let $X, Y, Z, W, S, T$ be the foots of the perpendiculars from $P$ to the lines $AB, BC, CD, DA, BD, AC$, respectively. Let the perpendicular bisectors of $XY$ and $WZ$ intersect at $Q$, and those of $YZ$ and $XW$ intersect at $R$. Prove that the lines $QR$ and $ST$ are parallel.

MM Problem
0 replies
buratinogigle
Apr 16, 2025
0 replies
A Problem on a Rectangle
G H J
G H BBookmark kLocked kLocked NReply
Source: VN Math Olympiad For High School Students P11 - 2025 - Bonus, MM Problem 2197
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
buratinogigle
2421 posts
#1
Y by
Let $ABCD$ be a rectangle and $P$ any point. Let $X, Y, Z, W, S, T$ be the foots of the perpendiculars from $P$ to the lines $AB, BC, CD, DA, BD, AC$, respectively. Let the perpendicular bisectors of $XY$ and $WZ$ intersect at $Q$, and those of $YZ$ and $XW$ intersect at $R$. Prove that the lines $QR$ and $ST$ are parallel.

MM Problem
Attachments:
This post has been edited 4 times. Last edited by buratinogigle, Apr 17, 2025, 12:10 AM
Reason: Typo
Z K Y
N Quick Reply
G
H
=
a