Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
Yesterday at 11:16 PM
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Yesterday at 11:16 PM
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Math and AI 4 Girls
mkwhe   35
N 21 minutes ago by Inaaya
Hey everyone!

The 2025 MA4G competition is now open!

Apply Here: https://xmathandai4girls.submittable.com/submit


Visit https://www.mathandai4girls.org/ to get started!

Feel free to PM or email mathandai4girls@yahoo.com if you have any questions!
35 replies
mkwhe
Apr 5, 2025
Inaaya
21 minutes ago
Infinite product problem
ReticulatedPython   0
29 minutes ago
Compute $$\prod_{n=1}^{\infty}3^{\frac{1}{2^{n-1}}}+1$$
hint

The solution to this problem is pretty short once you find out the trick. :D
0 replies
ReticulatedPython
29 minutes ago
0 replies
9 What language do you take
LXC007   0
an hour ago
In my school pretty much all the math people take latin. I was wondering if this is the case for others as well. At my school we have Spanish French Chinese and Latin. I also added German and Japanese because google said it was offered in some schools
0 replies
LXC007
an hour ago
0 replies
What's the chance that two AoPS accounts generate with the same icon?
Math-lover1   0
an hour ago
So I've been wondering how many possible "icons" can be generated when you first create an account. By "icon" I mean the stack of cubes as the first profile picture before changing it.

I don't know a lot about how AoPS icons generate, so I have a few questions:
- Do the colors on AoPS icons generate through a preset of colors or the RGB (red, green, blue in hexadecimal form) scale? If it generates through the RGB scale, then there may be greater than $256^3 = 16777216$ different icons.
- Do the arrangements of the stacks of blocks in the icon change with each account? If so, I think we can calculate this through considering each stack of blocks independently.
0 replies
Math-lover1
an hour ago
0 replies
Euler's function
luutrongphuc   2
N an hour ago by KevinYang2.71
Find all real numbers \(\alpha\) such that for every positive real \(c\), there exists an integer \(n>1\) satisfying
\[
\frac{\varphi(n!)}{n^\alpha\,(n-1)!} \;>\; c.
\]
2 replies
luutrongphuc
4 hours ago
KevinYang2.71
an hour ago
Wot n' Minimization
y-is-the-best-_   25
N 2 hours ago by john0512
Source: IMO SL 2019 A3
Let $n \geqslant 3$ be a positive integer and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a strictly increasing sequence of $n$ positive real numbers with sum equal to 2. Let $X$ be a subset of $\{1,2, \ldots, n\}$ such that the value of
\[
\left|1-\sum_{i \in X} a_{i}\right|
\]is minimised. Prove that there exists a strictly increasing sequence of $n$ positive real numbers $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with sum equal to 2 such that
\[
\sum_{i \in X} b_{i}=1.
\]
25 replies
y-is-the-best-_
Sep 23, 2020
john0512
2 hours ago
Line AT passes through either S_1 or S_2
v_Enhance   88
N 2 hours ago by bjump
Source: USA December TST for 57th IMO 2016, Problem 2
Let $ABC$ be a scalene triangle with circumcircle $\Omega$, and suppose the incircle of $ABC$ touches $BC$ at $D$. The angle bisector of $\angle A$ meets $BC$ and $\Omega$ at $E$ and $F$. The circumcircle of $\triangle DEF$ intersects the $A$-excircle at $S_1$, $S_2$, and $\Omega$ at $T \neq F$. Prove that line $AT$ passes through either $S_1$ or $S_2$.

Proposed by Evan Chen
88 replies
v_Enhance
Dec 21, 2015
bjump
2 hours ago
Inequality with a,b,c
GeoMorocco   4
N 2 hours ago by Natrium
Source: Morocco Training
Let $   a,b,c   $ be positive real numbers such that : $   ab+bc+ca=3   $ . Prove that : $$\frac{\sqrt{1+a^2}}{1+ab}+\frac{\sqrt{1+b^2}}{1+bc}+\frac{\sqrt{1+c^2}}{1+ca}\ge \sqrt{\frac{3(a+b+c)}{2}}$$
4 replies
GeoMorocco
Apr 11, 2025
Natrium
2 hours ago
China Northern MO 2009 p4 CNMO
parkjungmin   1
N 2 hours ago by WallyWalrus
Source: China Northern MO 2009 p4 CNMO P4
The problem is too difficult.
1 reply
parkjungmin
Apr 30, 2025
WallyWalrus
2 hours ago
Polynomial Squares
zacchro   26
N 2 hours ago by Mathandski
Source: USA December TST for IMO 2017, Problem 3, by Alison Miller
Let $P, Q \in \mathbb{R}[x]$ be relatively prime nonconstant polynomials. Show that there can be at most three real numbers $\lambda$ such that $P + \lambda Q$ is the square of a polynomial.

Alison Miller
26 replies
zacchro
Dec 11, 2016
Mathandski
2 hours ago
Mmo 9-10 graders P5
Bet667   8
N 2 hours ago by User141208
Let $a,b,c,d$ be real numbers less than 2.Then prove that $\frac{a^3}{b^2+4}+\frac{b^3}{c^2+4}+\frac{c^3}{d^2+4}+\frac{d^3}{a^2+4}\le4$
8 replies
Bet667
Apr 3, 2025
User141208
2 hours ago
Tangent to two circles
Mamadi   1
N 2 hours ago by ricarlos
Source: Own
Two circles \( w_1 \) and \( w_2 \) intersect each other at \( M \) and \( N \). The common tangent to two circles nearer to \( M \) touch \( w_1 \) and \( w_2 \) at \( A \) and \( B \) respectively. Let \( C \) and \( D \) be the reflection of \( A \) and \( B \) respectively with respect to \( M \). The circumcircle of the triangle \( DCM \) intersect circles \( w_1 \) and \( w_2 \) respectively at points \( E \) and \( F \) (both distinct from \( M \)). Show that the line \( EF \) is the second tangent to \( w_1 \) and \( w_2 \).
1 reply
Mamadi
Today at 7:01 AM
ricarlos
2 hours ago
China Northern MO 2009 p4 CNMO
parkjungmin   2
N 2 hours ago by WallyWalrus
Source: China Northern MO 2009 p4 CNMO
China Northern MO 2009 p4 CNMO

The problem is too difficult.
Is there anyone who can help me?
2 replies
parkjungmin
Apr 30, 2025
WallyWalrus
2 hours ago
Problem 4
codyj   86
N 3 hours ago by Mathgloggers
Source: IMO 2015 #4
Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$.

Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$.

Proposed by Greece
86 replies
codyj
Jul 11, 2015
Mathgloggers
3 hours ago
easy olympiad problem
kjhgyuio   7
N Apr 23, 2025 by Charizard_637
Find all positive integer values of \( x \) such that
\[
\sqrt{x - 2011} + \sqrt{2011 - x} + 10
\]is an integer.
7 replies
kjhgyuio
Apr 17, 2025
Charizard_637
Apr 23, 2025
easy olympiad problem
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kjhgyuio
55 posts
#1
Y by
Find all positive integer values of \( x \) such that
\[
\sqrt{x - 2011} + \sqrt{2011 - x} + 10
\]is an integer.
This post has been edited 2 times. Last edited by kjhgyuio, Apr 17, 2025, 2:01 PM
Reason: nil
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathdreams
1470 posts
#2
Y by
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Charizard_637
111 posts
#3
Y by
$x-2011$ and $2011-x$ are each other's negatives, and you can't take the square root of a negative number while having an integer solution. Therefore the only solution that would work is if they were both non-negative, and based on this they must be zero because one positive number will lead to one negative number. Since 0 is neither negative or positive it's what's under both square roots. Therefore, $\sqrt{x-2011} = 0$. Squaring both sides gives $x-2011 = 0$, hence $x = 2011$. This is the only solution.

Edit: I know it's verbose but it's an "olympiad problem"
This post has been edited 2 times. Last edited by Charizard_637, Apr 21, 2025, 5:44 PM
Reason: e
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vincentwant
1368 posts
#4
Y by
Charizard_637 wrote:
$x-2011$ and $2011-x$ are each other's negatives, and you can't take the square root of a negative number while having an integer solution. Therefore the only solution that would work is if they were both non-negative, and based on this they must be zero because one positive number will lead to one negative number. Since 0 is neither negative or positive it's what's under both square roots. Therefore, $\sqrt{x-2011} = 0$. Squaring both sides gives $x-2011 = 0$, hence $x = 2011$. This is the only solution.

Edit: I know it's verbose but it's an olympiad problem

you dont have to do this, this is enough

Notice that for the expression to be real, $x-2011\geq0$ and $2011-x\geq 0$, otherwise the imaginary part of the expression would be positive. Thus no solutions other than $x=2011$ exist, and inspection gives that $x=2011$ works. Thus the answer is $x=2011$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
deduck
218 posts
#5
Y by
this is a past amc8 problem
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Roger.Moore
5 posts
#6
Y by
The both the roots there are reals only if x=2011
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maxklark
6 posts
#7
Y by
Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Charizard_637
111 posts
#8
Y by
deduck wrote:
this is a past amc8 problem

oh
my
:rotfl:
Z K Y
N Quick Reply
G
H
=
a