Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
ISI UGB 2025 P8
SomeonecoolLovesMaths   2
N 4 minutes ago by SomeonecoolLovesMaths
Source: ISI UGB 2025 P8
Let $n \geq 2$ and let $a_1 \leq a_2 \leq \cdots \leq a_n$ be positive integers such that $\sum_{i=1}^{n} a_i = \prod_{i=1}^{n} a_i$. Prove that $\sum_{i=1}^{n} a_i \leq 2n$ and determine when equality holds.
2 replies
SomeonecoolLovesMaths
Today at 11:20 AM
SomeonecoolLovesMaths
4 minutes ago
ISI UGB 2025 P2
SomeonecoolLovesMaths   4
N 10 minutes ago by MathsSolver007
Source: ISI UGB 2025 P2
If the interior angles of a triangle $ABC$ satisfy the equality, $$\sin ^2 A + \sin ^2 B + \sin^2  C = 2 \left( \cos ^2 A + \cos ^2 B + \cos ^2 C \right),$$prove that the triangle must have a right angle.
4 replies
1 viewing
SomeonecoolLovesMaths
Today at 11:16 AM
MathsSolver007
10 minutes ago
IMO ShortList 1998, combinatorics theory problem 5
orl   47
N 14 minutes ago by mathwiz_1207
Source: IMO ShortList 1998, combinatorics theory problem 5
In a contest, there are $m$ candidates and $n$ judges, where $n\geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most $k$ candidates. Prove that \[{\frac{k}{m}} \geq {\frac{n-1}{2n}}. \]
47 replies
1 viewing
orl
Oct 22, 2004
mathwiz_1207
14 minutes ago
Cyclic equality implies equal sum of squares
blackbluecar   34
N 14 minutes ago by Markas
Source: 2021 Iberoamerican Mathematical Olympiad, P4
Let $a,b,c,x,y,z$ be real numbers such that

\[ a^2+x^2=b^2+y^2=c^2+z^2=(a+b)^2+(x+y)^2=(b+c)^2+(y+z)^2=(c+a)^2+(z+x)^2 \]
Show that $a^2+b^2+c^2=x^2+y^2+z^2$.
34 replies
blackbluecar
Oct 21, 2021
Markas
14 minutes ago
Common tangent to diameter circles
Stuttgarden   5
N 16 minutes ago by zuat.e
Source: Spain MO 2025 P2
The cyclic quadrilateral $ABCD$, inscribed in the circle $\Gamma$, satisfies $AB=BC$ and $CD=DA$, and $E$ is the intersection point of the diagonals $AC$ and $BD$. The circle with center $A$ and radius $AE$ intersects $\Gamma$ in two points $F$ and $G$. Prove that the line $FG$ is tangent to the circles with diameters $BE$ and $DE$.
5 replies
Stuttgarden
Mar 31, 2025
zuat.e
16 minutes ago
2020 EGMO P2: Sum inequality with permutations
alifenix-   29
N 17 minutes ago by Markas
Source: 2020 EGMO P2
Find all lists $(x_1, x_2, \ldots, x_{2020})$ of non-negative real numbers such that the following three conditions are all satisfied:

[list]
[*] $x_1 \le x_2 \le \ldots \le x_{2020}$;
[*] $x_{2020} \le x_1  + 1$;
[*] there is a permutation $(y_1, y_2, \ldots, y_{2020})$ of $(x_1, x_2, \ldots, x_{2020})$ such that $$\sum_{i = 1}^{2020} ((x_i + 1)(y_i + 1))^2 = 8 \sum_{i = 1}^{2020} x_i^3.$$[/list]

A permutation of a list is a list of the same length, with the same entries, but the entries are allowed to be in any order. For example, $(2, 1, 2)$ is a permutation of $(1, 2, 2)$, and they are both permutations of $(2, 2, 1)$. Note that any list is a permutation of itself.
29 replies
alifenix-
Apr 18, 2020
Markas
17 minutes ago
IMO 2018 Problem 2
juckter   97
N 19 minutes ago by Markas
Find all integers $n \geq 3$ for which there exist real numbers $a_1, a_2, \dots a_{n + 2}$ satisfying $a_{n + 1} = a_1$, $a_{n + 2} = a_2$ and
$$a_ia_{i + 1} + 1 = a_{i + 2},$$for $i = 1, 2, \dots, n$.

Proposed by Patrik Bak, Slovakia
97 replies
juckter
Jul 9, 2018
Markas
19 minutes ago
prove that a_50 + b_50 > 20
kamatadu   8
N 21 minutes ago by Markas
Source: Canada Training Camp
The sequences $a_n$ and $b_n$ are such that, for every positive integer $n$,
\[ a_n > 0,\qquad\ b_n>0,\qquad\ a_{n+1}=a_n+\dfrac{1}{b_n},\qquad\ b_{n+1} = b_n+\dfrac{1}{a_n}. \]Prove that $a_{50} + b_{50} > 20$.
8 replies
kamatadu
Dec 30, 2023
Markas
21 minutes ago
EGMO P4 infinite sequence
aditya21   29
N 22 minutes ago by Markas
Source: EGMO 2015, Problem 4
Determine whether there exists an infinite sequence $a_1, a_2, a_3, \dots$ of positive integers
which satisfies the equality \[a_{n+2}=a_{n+1}+\sqrt{a_{n+1}+a_{n}} \] for every positive integer $n$.
29 replies
aditya21
Apr 17, 2015
Markas
22 minutes ago
IMO 2014 Problem 1
Amir Hossein   133
N 23 minutes ago by Markas
Let $a_0 < a_1 < a_2 < \dots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n\geq 1$ such that
\[a_n < \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.\]
Proposed by Gerhard Wöginger, Austria.
133 replies
Amir Hossein
Jul 8, 2014
Markas
23 minutes ago
Sequences and limit
lehungvietbao   16
N 24 minutes ago by Markas
Source: Vietnam Mathematical OLympiad 2014
Let $({{x}_{n}}),({{y}_{n}})$ be two positive sequences defined by ${{x}_{1}}=1,{{y}_{1}}=\sqrt{3}$ and
\[ \begin{cases}  {{x}_{n+1}}{{y}_{n+1}}-{{x}_{n}}=0 \\   x_{n+1}^{2}+{{y}_{n}}=2 \end{cases} \] for all $n=1,2,3,\ldots$.
Prove that they are converges and find their limits.
16 replies
lehungvietbao
Jan 3, 2014
Markas
24 minutes ago
Real triples
juckter   67
N 24 minutes ago by Markas
Source: EGMO 2019 Problem 1
Find all triples $(a, b, c)$ of real numbers such that $ab + bc + ca = 1$ and

$$a^2b + c = b^2c + a = c^2a + b.$$
67 replies
juckter
Apr 9, 2019
Markas
24 minutes ago
Social Club with 2k+1 Members
v_Enhance   24
N 36 minutes ago by mathwiz_1207
Source: USA December TST for IMO 2013, Problem 1
A social club has $2k+1$ members, each of whom is fluent in the same $k$ languages. Any pair of members always talk to each other in only one language. Suppose that there were no three members such that they use only one language among them. Let $A$ be the number of three-member subsets such that the three distinct pairs among them use different languages. Find the maximum possible value of $A$.
24 replies
v_Enhance
Jul 30, 2013
mathwiz_1207
36 minutes ago
A strong inequality problem
hn111009   1
N 41 minutes ago by Tung-CHL
Source: Somewhere
Let $a,b,c$ be the positive number satisfied $a^2+b^2+c^2=3.$ Find the minimum of $$P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{3abc}{2(ab+bc+ca)}.$$
1 reply
hn111009
Today at 2:02 AM
Tung-CHL
41 minutes ago
One more problem defined only with lines
Assassino9931   2
N Apr 28, 2025 by sami1618
Source: Balkan MO 2024 Shortlist G6
Let $ABC$ be a triangle and the points $K$ and $L$ on $AB$, $M$ and $N$ on $BC$, and $P$ and $Q$ on $AC$ be such that $AK = LB < \frac{1}{2}AB, BM = NC < \frac{1}{2}BC$ and $CP = QA < \frac{1}{2}AC$. The intersections of $KN$ with $MQ$ and $LP$ are $R$ and $T$ respectively, and the intersections of $NP$ with $LM$ and $KQ$ are $D$ and $E$, respectively. Prove that the lines $DR, BE$ and $CT$ are concurrent.
2 replies
Assassino9931
Apr 27, 2025
sami1618
Apr 28, 2025
One more problem defined only with lines
G H J
G H BBookmark kLocked kLocked NReply
Source: Balkan MO 2024 Shortlist G6
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1343 posts
#1
Y by
Let $ABC$ be a triangle and the points $K$ and $L$ on $AB$, $M$ and $N$ on $BC$, and $P$ and $Q$ on $AC$ be such that $AK = LB < \frac{1}{2}AB, BM = NC < \frac{1}{2}BC$ and $CP = QA < \frac{1}{2}AC$. The intersections of $KN$ with $MQ$ and $LP$ are $R$ and $T$ respectively, and the intersections of $NP$ with $LM$ and $KQ$ are $D$ and $E$, respectively. Prove that the lines $DR, BE$ and $CT$ are concurrent.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tamam
20 posts
#2 • 1 Y
Y by Lahmacuncu
Let $PL\cap CB=X$, $KN\cap AC=Y$ ,$MQ\cap AB=Z$, $PL\cap MQ=S$,$F=ML\cap KQ$. Menelaus at $ABC$ with lines $MQ$ ,$PL$, $KN$ gives $\frac{ZA}{ZB}=\frac{CM}{MB}.\frac{AQ}{QC}$ ,$\frac{YC}{YA}=\frac{CN}{NB}.\frac{BK}{KA}$, $\frac{XB}{XC}=\frac{BL}{LA}.\frac{AP}{PC}$ multiplying everything gives $\frac{ZA}{ZB}.\frac{YC}{YA}.\frac{XB}{XC}=1$ So from Menelaus $X,Y,Z$ are collinear. Since $AL\cap RM$, $AP\cap RN$, $PL\cap NM$ are collinear $AR,PN,LM$ are concurrent(From Desaurges Theorem). So $A,R,D$ are collinear. Similar for $E,S,B$ and $C,T,F$. Since $TS\cap CB$ , $SR\cap BA$, $RT\cap AC$ are collinear $CT,AR,BS$ are concurrent(From Desaurges Theorem). We are done.
This post has been edited 6 times. Last edited by Tamam, Apr 28, 2025, 1:58 PM
Reason: Typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sami1618
909 posts
#4
Y by
Let $F=KQ\cap LM$ and let $S=MQ\cap LP$. By Carnot's Conic Theorem, there exists a conic $\mathcal{E}$ passing through the point $K$, $L$, $M$, $N$, $P$, and $Q$. Thus by three applications of Pascal's Theorem, $R$, $S$, and $T$ lie on lines $AD$, $BE$, and $CF$. Thus we need to show lines $AD$, $BE$, and $CF$ are concurrent.
[asy]
import geometry;
size(10cm);
pair A=dir(120);
pair B=dir(210);
pair C=dir(330);
pair L=  .2A+.8B;
pair K=.8A+.2B;
pair N=.3B+.7C;
pair M=.7B+.3C;
pair P=.25A+.75C;
pair Q=.25C+.75A;
pair R=intersectionpoint(line(K,N),line(M,Q));
pair T=intersectionpoint(line(K,N),line(L,P));
pair D=intersectionpoint(line(P,N),line(M,L));
pair E=intersectionpoint(line(P,N),line(K,Q));
pair X=intersectionpoint(line(E,B),line(D,R));
pair F=intersectionpoint(line(K,Q),line(L,M));
pair S=intersectionpoint(line(M,Q),line(L,P));



draw(conic(K,L,M,P,Q),deepgreen);
draw(B--E,grey); draw(A--D,grey); draw(C--F,grey); draw(N--K); draw(Q--M); draw(L--P);
draw(A--B--C--cycle, red);
draw(D--E--F--cycle);
dot("A",A,dir(A));
dot("B",B,dir(B));
dot("C",C,dir(C));
dot("K",K,dir(120));
dot("L",L,dir(185));
dot("M",M,dir(250));
dot("N",N,dir(-50));
dot("P",P,dir(0));
dot("Q",Q,dir(30));
dot("R",R,dir(10));
dot("T",T,dir(60));
dot("D",D,dir(280));
dot("E",E,dir(20));
dot(X);
dot("F",F,dir(165));
dot("S",S,dir(120));



[/asy]
Consider the hexagon circumscribed about $\mathcal{E}$ with consecutive tangency points at $K$, $L$, $M$, $N$, $P$, and $Q$. By more applications of Pascal's Theorem, we get that the diagonals of this hexagon coincide with $AD$, $BE$, and $CF$. By Brocard's Theorem, $AD$, $BE$, and $CF$ are concurrent, as desired.
This post has been edited 1 time. Last edited by sami1618, Apr 28, 2025, 4:53 PM
Z K Y
N Quick Reply
G
H
=
a