Happy Memorial Day! Please note that AoPS Online is closed May 24-26th.

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Tangent to incircles.
dendimon18   7
N 14 minutes ago by Gggvds1
Source: ISR 2021 TST1 p.3
Let $ABC$ be an acute triangle with orthocenter $H$. Prove that there is a line $l$ which is parallel to $BC$ and tangent to the incircles of $ABH$ and $ACH$.
7 replies
1 viewing
dendimon18
May 4, 2022
Gggvds1
14 minutes ago
Problem 3 of RMO 2006 (Regional Mathematical Olympiad-India)
makar   36
N 19 minutes ago by SomeonecoolLovesMaths
Source: Elementry inequality
If $ a,b,c$ are three positive real numbers, prove that $ \frac {a^{2}+1}{b+c}+\frac {b^{2}+1}{c+a}+\frac {c^{2}+1}{a+b}\ge 3$
36 replies
makar
Sep 13, 2009
SomeonecoolLovesMaths
19 minutes ago
Three numbers cannot be squares simultaneously
WakeUp   40
N 21 minutes ago by Adywastaken
Source: APMO 2011
Let $a,b,c$ be positive integers. Prove that it is impossible to have all of the three numbers $a^2+b+c,b^2+c+a,c^2+a+b$ to be perfect squares.
40 replies
WakeUp
May 18, 2011
Adywastaken
21 minutes ago
Prove the inequality
Butterfly   0
28 minutes ago

Prove
$$x^2+y^2+7\ge 3(x+y)+\frac{9}{xy+2}~~(x,y>0).$$
0 replies
Butterfly
28 minutes ago
0 replies
Kaprekar Number
CSJL   5
N 29 minutes ago by Adywastaken
Source: 2025 Taiwan TST Round 1 Independent Study 2-N
Let $k$ be a positive integer. A positive integer $n$ is called a $k$-good number if it satisfies
the following two conditions:

1. $n$ has exactly $2k$ digits in decimal representation (it cannot have leading zeros).

2. If the first $k$ digits and the last $k$ digits of $n$ are considered as two separate $k$-digit
numbers (which may have leading zeros), the square of their sum is equal to $n$.

For example, $2025$ is a $2$-good number because
\[(20 + 25)^2 = 2025.\]Find all $3$-good numbers.
5 replies
CSJL
Mar 6, 2025
Adywastaken
29 minutes ago
Projective geometry
definite_denny   0
30 minutes ago
Source: IDK
Let ABC be a triangle and let DEF be the tangency point of incircirle with sides BC,CA,AB. Points P,Q are chosen on sides AB,AC such that PQ is parallel to BC and PQ is tangent to the incircle. Let M denote the midpoint of PQ. Let EF intersect BC at T. Prove that TM is tangent to the incircle
0 replies
definite_denny
30 minutes ago
0 replies
Problem 7 of RMO 2006 (Regional Mathematical Olympiad-India)
makar   11
N 36 minutes ago by SomeonecoolLovesMaths
Source: Functional Equation
Let $ X$ be the set of all positive integers greater than or equal to $ 8$ and let $ f: X\rightarrow X$ be a function such that $ f(x+y)=f(xy)$ for all $ x\ge 4, y\ge 4 .$ if $ f(8)=9$, determine $ f(9) .$
11 replies
makar
Sep 13, 2009
SomeonecoolLovesMaths
36 minutes ago
Hardest in ARO 2008
discredit   26
N 43 minutes ago by JARP091
Source: ARO 2008, Problem 11.8
In a chess tournament $ 2n+3$ players take part. Every two play exactly one match. The schedule is such that no two matches are played at the same time, and each player, after taking part in a match, is free in at least $ n$ next (consecutive) matches. Prove that one of the players who play in the opening match will also play in the closing match.
26 replies
discredit
Jun 11, 2008
JARP091
43 minutes ago
Inequality
Kei0923   2
N an hour ago by Kei0923
Source: Own.
Let $k\leq 1$ be a fixed positive real number. Find the minimum possible value $M$ such that for any positive reals $a$, $b$, $c$, $d$, we have
$$\sqrt{\frac{ab}{(a+b)(b+c)}}+\sqrt{\frac{cd}{(c+d)(d+ka)}}\leq M.$$
2 replies
Kei0923
Jul 25, 2023
Kei0923
an hour ago
PAMO 2023 Problem 2
kerryberry   6
N an hour ago by justaguy_69
Source: 2023 Pan African Mathematics Olympiad Problem 2
Find all positive integers $m$ and $n$ with no common divisor greater than 1 such that $m^3 + n^3$ divides $m^2 + 20mn + n^2$. (Professor Yongjin Song)
6 replies
kerryberry
May 17, 2023
justaguy_69
an hour ago
My Unsolved Problem
ZeltaQN2008   0
2 hours ago
Source: IDK
Given a positive integer \( m \) and \( a > 1 \). Prove that there always exists a positive integer \( n \) such that \( m \mid (a^n + n) \).

P/s: I can prove the problem if $m$ is a power of a prime number, but for arbitrary $m$ then well.....
0 replies
ZeltaQN2008
2 hours ago
0 replies
Computing functions
BBNoDollar   3
N 2 hours ago by wh0nix
Let $f : [0, \infty) \to [0, \infty)$, $f(x) = \dfrac{ax + b}{cx + d}$, with $a, d \in (0, \infty)$, $b, c \in [0, \infty)$. Prove that there exists $n \in \mathbb{N}^*$ such that for every $x \geq 0$
\[
f_n(x) = \frac{x}{1 + nx}, \quad \text{if and only if } f(x) = \frac{x}{1 + x}, \quad \forall x \geq 0.
\](For $n \in \mathbb{N}^*$ and $x \geq 0$, the notation $f_n(x)$ represents $\underbrace{(f \circ f \circ \dots \circ f)}_{n \text{ times}}(x)$. )
3 replies
BBNoDollar
May 21, 2025
wh0nix
2 hours ago
Computing functions
BBNoDollar   8
N 2 hours ago by wh0nix
Let $f : [0, \infty) \to [0, \infty)$, $f(x) = \dfrac{ax + b}{cx + d}$, with $a, d \in (0, \infty)$, $b, c \in [0, \infty)$. Prove that there exists $n \in \mathbb{N}^*$ such that for every $x \geq 0$
\[
f_n(x) = \frac{x}{1 + nx}, \quad \text{if and only if } f(x) = \frac{x}{1 + x}, \quad \forall x \geq 0.
\](For $n \in \mathbb{N}^*$ and $x \geq 0$, the notation $f_n(x)$ represents $\underbrace{(f \circ f \circ \dots \circ f)}_{n \text{ times}}(x)$. )
8 replies
BBNoDollar
May 18, 2025
wh0nix
2 hours ago
Find the remainder
Jackson0423   1
N 2 hours ago by wh0nix

Find the remainder when
\[
\frac{5^{2000} - 1}{4}
\]is divided by \(64\).
1 reply
Jackson0423
3 hours ago
wh0nix
2 hours ago
symmedian in two circles
dan23   7
N Jan 2, 2022 by Mahdi_Mashayekhi
Source: Iran second round- 2013- P4
Let $P$ be a point out of circle $C$. Let $PA$ and $PB$ be the tangents to the circle drawn from $C$. Choose a point $K$ on $AB$ . Suppose that the circumcircle of triangle $PBK$ intersects $C$ again at $T$. Let ${P}'$ be the reflection of $P$ with respect to $A$. Prove that
\[ \angle PBT = \angle {P}'KA \]
7 replies
dan23
May 4, 2013
Mahdi_Mashayekhi
Jan 2, 2022
symmedian in two circles
G H J
Source: Iran second round- 2013- P4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dan23
32 posts
#1 • 3 Y
Y by Adventure10, Mango247, Rounak_iitr
Let $P$ be a point out of circle $C$. Let $PA$ and $PB$ be the tangents to the circle drawn from $C$. Choose a point $K$ on $AB$ . Suppose that the circumcircle of triangle $PBK$ intersects $C$ again at $T$. Let ${P}'$ be the reflection of $P$ with respect to $A$. Prove that
\[ \angle PBT = \angle {P}'KA \]
This post has been edited 5 times. Last edited by dan23, May 25, 2013, 5:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
duanby
76 posts
#2 • 2 Y
Y by Adventure10, Mango247
my solution (may be it is complicated):
Let K' on AB AK'=BK
Let K'' on line AB,AK''=AK'
Then we have $\angle{P'K''K}=\angle{PTB}$
So need to prove P'K''K similar to PTB
sufficient to provePK''/KK''=PT/TB
that is PK/AB=PT/TB
by PTK simialr to BTA
done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
leader
339 posts
#3 • 2 Y
Y by thunderz28, Adventure10
$PTB\sim TKA$ so $PT/TK=PB/KA=AP'/AK$ so $P'AK\sim PTK$ done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sco0orpiOn
76 posts
#4 • 1 Y
Y by Adventure10
we need to prove that $AT$ is parallel to $PK$ and because $A$ is midpoint of $PP'$ then we need to prove that $AT$ goes through midpoint of $PK$ so now let $AT$ intersect $PK$ at $L$ then we have $ \angle LKT= \angle PBT= \angle TAK \Rightarrow LK^2=LT.LA$
in same way we can prove that $LP^2=LT.LA $ so now $LP=LK$ and we are done
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
alirezaaghaee
1 post
#5 • 2 Y
Y by Adventure10, Mango247
lemma:suppose a tiangle ABC and point T on the BC. so we would have: BT/CT=(sin(BAT)*BA)/(sin(CAT)*CA)

in the triangle AKP , continue the line AT to meet PK at the point S.since the PTKB is embedded in a circle we will easily find it out that $\angle  TPK=\angle TAP $ and $\angle TKP = \angle KAT $
now use the lemma in two triangles $%Error. "triagles" is a bad command.
AKP $ and $%Error. "triagles" is a bad command.
TKP $ for the point S and we will prove that SP=PK.
so the two lines AT and kp' are parallel and $\angle P'KA=\angle KAT =\angle TBP$
and we are done
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PRO2000
239 posts
#6 • 2 Y
Y by Adventure10, Mango247
First , $AT \cap \circ BKP$ =$ {X} $ where $X$ is distinct from $T$ and also let $AT \cap KP=Z$. By an angle chase $AKXP$ is a $||^{gm}$.Diagonals of a $||^{gm}$ bisect each other and $P{P}'$ is bisected at $A$. So , $ZA || K{P}'$ which (again after an angle chase) yields us \[ \angle PBT = \angle {P}'KA \]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rafaello
1079 posts
#8
Y by
Restated Iran Second Round 2013 P4 wrote:
Let $P$ be a point out of circle $\omega$. Let $PA$ and $PB$ be the tangents to the circle drawn from $C$. Choose a point $C$ on $AB$ . Suppose that the circumcircle of triangle $PBC$ intersects $\omega$ again at $K$. Let $Q$ be the reflection of $P$ with respect to $A$. Prove that
\[ \angle DBP = \angle QCA \]

Angle chase.
$$\measuredangle PAD=\measuredangle ABD=\measuredangle CBD=\measuredangle CPD$$and $$\measuredangle DAC=\measuredangle DAB=\measuredangle DBP=\measuredangle DCP.$$
By this, we conclude that $D$ is the $A$-Humpty point of $\triangle APC$.
By Humpty properties, we have $AD$ bisecting $PC$, hence $AD\parallel CQ$.
Thus, $$\measuredangle DBP=\measuredangle DAB=\measuredangle DAC=\measuredangle QCA$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mahdi_Mashayekhi
696 posts
#9
Y by
step 1: TAK and TBP are similar.
well easy to see ∠TAK = ∠PBT and ∠TKA = ∠TPB.

step 2: AP'K and TBA are similar.
from step1 we have AT/AK = BT/BP = BT/AP = BT/AP' and ∠P'AK = 180 - ∠BAP = 180 - ∠ABP = ∠KTP = ∠ATB.

now from step2 we have ∠P'KA = ∠BAT = ∠PBK.
we're Done.
Z K Y
N Quick Reply
G
H
=
a