Join our FREE webinar on May 1st to learn about managing anxiety.

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Functional equation
Amin12   17
N a few seconds ago by bin_sherlo
Source: Iran 3rd round 2017 first Algebra exam
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x}))$$for all positive real numbers $x$ and $y$.
17 replies
Amin12
Aug 7, 2017
bin_sherlo
a few seconds ago
Trivial fun Equilateral
ItzsleepyXD   2
N 37 minutes ago by moony_
Source: Own , Mock Thailand Mathematic Olympiad P1
Let $ABC$ be a scalene triangle with point $P$ and $Q$ on the plane such that $\triangle BPC , \triangle CQB$ is an equilateral . Let $AB$ intersect $CP$ and $CQ$ at $X$ and $Z$ respectively and $AC$ intersect $BP$ and $BQ$ at $Y$ and $W$ respectively .
Prove that $XY\parallel ZW$
2 replies
ItzsleepyXD
3 hours ago
moony_
37 minutes ago
problem interesting
Cobedangiu   2
N an hour ago by Cobedangiu
Let $a=3k^2+3k+1 (a,k \in N)$
$i)$ Prove that: $a^2$ is the sum of $3$ square numbers
$ii)$ Let $b \vdots a$ and $b$ is the sum of $3$ square numbers. Prove that: $b^n$ is the sum of $3$ square numbers
2 replies
Cobedangiu
Today at 5:06 AM
Cobedangiu
an hour ago
Invariant board combi style
ItzsleepyXD   1
N an hour ago by waterbottle432
Source: Own , Mock Thailand Mathematic Olympiad P7
Oh write $2025^{2025^{2025}}$ real number on the board such that each number is more than $2025^{2025}$ .
Oh erase 2 number $x,y$ on the board and write $\frac{xy-2025}{x+y-90}$ .
Prove that the last number will always be the same regardless the order of number that Oh pick .
1 reply
ItzsleepyXD
2 hours ago
waterbottle432
an hour ago
weird Condition
B1t   8
N an hour ago by lolsamo
Source: Mongolian TST 2025 P4
deleted for a while
8 replies
B1t
Apr 27, 2025
lolsamo
an hour ago
D1025 : Can you do that?
Dattier   3
N an hour ago by Dattier
Source: les dattes à Dattier
Let $x_{n+1}=x_n^3$ and $x_0=3$.

Can you calculate $\sum\limits_{i=1}^{2^{2025}} x_i \mod 10^{30}$?
3 replies
Dattier
Yesterday at 8:24 PM
Dattier
an hour ago
Parallel condition and isogonal
ItzsleepyXD   1
N an hour ago by moony_
Source: Own , Mock Thailand Mathematic Olympiad P5
Let $ABC$ be triangle and point $D$ be $A-$ altitude of $\triangle ABC$ .
Let $E,F$ be a point on $AC$ and $AB$ such that $DE\parallel AB$ and $DF\parallel AC$ . Point $G$ is the intersection of $(AEF)$ and $(ABC)$ . Point $P$ be intersection of $(ADG)$ and $BC$ . Line $GD$ intersect circumcircle of $\triangle ABC$ again at $Q$ .
Prove that
(a) $\angle BAP = \angle QAC$ .
(b) $AQ$ bisect $BC$ .
1 reply
ItzsleepyXD
2 hours ago
moony_
an hour ago
RMM 2013 Problem 1
dr_Civot   31
N an hour ago by cursed_tangent1434
For a positive integer $a$, define a sequence of integers $x_1,x_2,\ldots$ by letting $x_1=a$ and $x_{n+1}=2x_n+1$ for $n\geq 1$. Let $y_n=2^{x_n}-1$. Determine the largest possible $k$ such that, for some positive integer $a$, the numbers $y_1,\ldots,y_k$ are all prime.
31 replies
dr_Civot
Mar 2, 2013
cursed_tangent1434
an hour ago
Inspired by old results
sqing   0
an hour ago
Source: Own
Let $  a , b , c>0  $and $  abc=1 $. Prove that
$$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a} +3 \geq  \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$$h
0 replies
sqing
an hour ago
0 replies
amazing balkan combi
egxa   7
N 2 hours ago by Assassino9931
Source: BMO 2025 P4
There are $n$ cities in a country, where $n \geq 100$ is an integer. Some pairs of cities are connected by direct (two-way) flights. For two cities $A$ and $B$ we define:

$(i)$ A $\emph{path}$ between $A$ and $B$ as a sequence of distinct cities $A = C_0, C_1, \dots, C_k, C_{k+1} = B$, $k \geq 0$, such that there are direct flights between $C_i$ and $C_{i+1}$ for every $0 \leq i \leq k$;
$(ii)$ A $\emph{long path}$ between $A$ and $B$ as a path between $A$ and $B$ such that no other path between $A$ and $B$ has more cities;
$(iii)$ A $\emph{short path}$ between $A$ and $B$ as a path between $A$ and $B$ such that no other path between $A$ and $B$ has fewer cities.
Assume that for any pair of cities $A$ and $B$ in the country, there exist a long path and a short path between them that have no cities in common (except $A$ and $B$). Let $F$ be the total number of pairs of cities in the country that are connected by direct flights. In terms of $n$, find all possible values $F$

Proposed by David-Andrei Anghel, Romania.
7 replies
egxa
Apr 27, 2025
Assassino9931
2 hours ago
Question on Balkan SL
Fmimch   2
N 2 hours ago by Assassino9931
Does anyone know where to find the Balkan MO Shortlist 2024? If you have the file, could you send in this thread? Thank you!
2 replies
Fmimch
Today at 12:13 AM
Assassino9931
2 hours ago
Or statement function
ItzsleepyXD   1
N 2 hours ago by Haris1
Source: Own , Mock Thailand Mathematic Olympiad P2
Find all $f: \mathbb{R} \to \mathbb{Z^+}$ such that $$f(x+f(y))=f(x)+f(y)+1\quad\text{ or }\quad f(x)+f(y)-1$$for all real number $x$ and $y$
1 reply
ItzsleepyXD
3 hours ago
Haris1
2 hours ago
Add a digit to obtain a new perfect square
Lukaluce   2
N 2 hours ago by TopGbulliedU
Source: 2024 Junior Macedonian Mathematical Olympiad P4
Let $a_1, a_2, ..., a_n$ be a sequence of perfect squares such that $a_{i + 1}$ can be obtained by concatenating a digit to the right of $a_i$. Determine all such sequences that are of maximum length.

Proposed by Ilija Jovčeski
2 replies
Lukaluce
Apr 14, 2025
TopGbulliedU
2 hours ago
Simple inequality
sqing   7
N 2 hours ago by sqing
Source: Daniel Sitaru
Let $a,b,c>0$ . Prove that$$\frac{a^3}{b^3}+\frac{b^3}{c^3}+\frac{c^3}{a^3}+9>\frac{3}{2}\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)$$
7 replies
sqing
Feb 10, 2017
sqing
2 hours ago
Parallelogram
zhaoli   4
N Dec 20, 2005 by jastrzab
Source: British 2005-2006 round 1 problem-5
Let $G$ be a convex quadrilateral. Show that there is a point $X$ in the plane of $G$ with the property that every straight line through $X$ divides $G$ into two regions of equal area if and only if $G$ is a parallelogram.
4 replies
zhaoli
Dec 2, 2005
jastrzab
Dec 20, 2005
Parallelogram
G H J
G H BBookmark kLocked kLocked NReply
Source: British 2005-2006 round 1 problem-5
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
zhaoli
418 posts
#1 • 2 Y
Y by Adventure10, Mango247
Let $G$ be a convex quadrilateral. Show that there is a point $X$ in the plane of $G$ with the property that every straight line through $X$ divides $G$ into two regions of equal area if and only if $G$ is a parallelogram.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
silouan
3952 posts
#2 • 2 Y
Y by Adventure10, Mango247
All the Greek people should see this problem. It is the same with Greek competition ''Thales'' , pr 4 at A lyceum.

BTW, when British 2005-2006 round 1 took place ?Thanks
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
qiaogang1990
1 post
#3 • 2 Y
Y by Adventure10, Mango247
简单题!

画图麻烦,直接写好了。

引理:给定直线l1,l2,l3. l1//l2. l3bu//l1.且l2的一部分夹在l1与l3之间.则在l2夹在l1与l3之间的部分上不存在点X,使过X做任意不重和的两直线与分别交得的两三角形面积相等。

证明:反证:设使过X做的任意不重和的两直线为L1,L2.L1与l1和l3分别交于A,D。L2与l1和l3分别交于B,C。设l3与l1,l2分别交于F,E。

由S(ABX)=S(CDX)得AX*XB=CX*XD,即AX/XD=CX/XB。而AX/XD=EF/ED,CX/XB=CE/EF。故EF/ED=CE/EF,即EF2=CE*ED。由于直线l1,l2,l3是给定的,故EF2为定值,而CE*ED随L1,L2变化,矛盾!故引理得证。

回到原题:

若ABbu//CD,过X点做EX//AB交CD于E。由上引理知过X做任意不重和的两直线与分别交得的两三角形面积不可能相等。这与题意不符!故AB//CD。同理可证AD//BC。故四边形ABCD是平行四边形,原命题得证!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Arne
3660 posts
#4 • 2 Y
Y by Adventure10, Mango247
Please post in English :mad:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jastrzab
99 posts
#5 • 2 Y
Y by Adventure10, Mango247
Well it's rather an easy problem. Of course our point $X$ must be in the interior of $G$. In other case as $G$ is convex, we can take a line passing through $X$ and not intersecting $G$. So let $X$ be our point in the interior of quadrilateral $G$, which we will denote with $ABCD$. Let $l$ be a line passing through $X$ and intersecting $AB$ and $CD$ in points $P$ and $Q$ respectively. Let $K$ and $M$ be such points on $CD$ that $KQ=QM$ and $K\neq M$. Let lines $KX$ and $MX$ intersect side $AB$ in $L$,$N$ respectively. By $S(XYZ)$ we will denote area of triangle $XYZ$ and the same thing for quadrilaterals... As lines $QP$,$KL$ and $MN$ are lines dividing $G$ into two parts of equal area, we obtain equations \[ S(KQX)+S(XPL)=S(QMX)+S(NPX) \] but as $S(KQX)=S(QMX)$ we have $S(XPL)=S(XNP)$ which means that $NP=PL$ .Now let $k$ be a line passing through $N$ and parallel to $CD$ this line intersects with lines $PQ$ and $KL$ in points $T$ and $U$ respectively. As we have $KQ=QM$ we have also $NT=TU$ ,but there is also equality $NP=PL$, and so on, if $k \neq AB$ it would mean that $TP||UL$ which is impossible. We obtained that $k=AB$, so $AB||CD$.
Analogically we may obtain that $AD||BC$ which means that $G$ is a parallelogram! :) Now , if $G$ is a parallelogram for point $X$ we can take intersection point of it's diagonals :)
Z K Y
N Quick Reply
G
H
=
a