Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Burapha integer
EeEeRUT   1
N 5 minutes ago by ItzsleepyXD
Source: TMO 2025 P1
For each positive integer $m$, denote by $d(m)$ the number of positive divisors of $m$. We say that a positive integer $n$ is Burapha integer if it satisfy the following condition
[list]
[*] $d(n)$ is an odd integer.
[*] $d(k) \leqslant d(\ell)$ holds for every positive divisor $k, \ell$ of $n$, such that $k < \ell$
[/list]
Find all Burapha integer.
1 reply
EeEeRUT
22 minutes ago
ItzsleepyXD
5 minutes ago
Algebra inequalities
TUAN2k8   1
N 6 minutes ago by lbh_qys
Source: Own
Is that true?
Let $a_1,a_2,...,a_n$ be real numbers such that $0 \leq a_i \leq 1$ for all $1 \leq i \leq n$.
Prove that: $\sum_{1 \leq i<j \leq n} (a_i-a_j)^2 \leq \frac{n}{2}$.
1 reply
TUAN2k8
35 minutes ago
lbh_qys
6 minutes ago
Thailand MO 2025 P3
Kaimiaku   1
N 13 minutes ago by ItzsleepyXD
Let $a,b,c,x,y,z$ be positive real numbers such that $ay+bz+cx \le az+bx+cy$. Prove that $$ \frac{xy}{ax+bx+cy}+\frac{yz}{by+cy+az}+\frac{zx}{cz+az+bx} \le \frac{x+y+z}{a+b+c}$$
1 reply
+2 w
Kaimiaku
36 minutes ago
ItzsleepyXD
13 minutes ago
Quadrilateral with Congruent Diagonals
v_Enhance   37
N 24 minutes ago by Ilikeminecraft
Source: USA TSTST 2012, Problem 2
Let $ABCD$ be a quadrilateral with $AC = BD$. Diagonals $AC$ and $BD$ meet at $P$. Let $\omega_1$ and $O_1$ denote the circumcircle and the circumcenter of triangle $ABP$. Let $\omega_2$ and $O_2$ denote the circumcircle and circumcenter of triangle $CDP$. Segment $BC$ meets $\omega_1$ and $\omega_2$ again at $S$ and $T$ (other than $B$ and $C$), respectively. Let $M$ and $N$ be the midpoints of minor arcs $\widehat {SP}$ (not including $B$) and $\widehat {TP}$ (not including $C$). Prove that $MN \parallel O_1O_2$.
37 replies
v_Enhance
Jul 19, 2012
Ilikeminecraft
24 minutes ago
Oh my god
EeEeRUT   0
28 minutes ago
Source: TMO 2025 P5
In a class, there are $n \geqslant 3$ students and a teacher with $M$ marbles. The teacher then play a Marble distribution according to the following rules. At the start, each student receives at least $1$ marbles from the teacher. Then, the teacher chooses a student , who has never been chosen before, such that the number of marbles that he owns in a multiple of $2(n-1)$. That chosen student then equally distribute half of his marbles to $n-1$ other students. The same goes on until the teacher is not able to choose anymore student.

Find all integer $M$, such that the teacher can give each student a number of marbles, so that he can choose all the student, resulting in each student receiving equal amount of marbles at the end.
0 replies
EeEeRUT
28 minutes ago
0 replies
geometry
EeEeRUT   1
N 36 minutes ago by ItzsleepyXD
Source: TMO 2025
Let $D,E$ and $F$ be touch points of the incenter of $\triangle ABC$ at $BC, CA$ and $AB$, respectively. Let $P,Q$ and $R$ be the circumcenter of triangles $AFE, BDF$ and $CED$, respectively. Show that $DP, EQ$ and $FR$ concurrent.
1 reply
EeEeRUT
40 minutes ago
ItzsleepyXD
36 minutes ago
Spanish Mathematical Olympiad 2002, Problem 1
OmicronGamma   3
N 40 minutes ago by NicoN9
Source: Spanish Mathematical Olympiad 2002
Find all the polynomials $P(t)$ of one variable that fullfill the following for all real numbers $x$ and $y$:
$P(x^2-y^2) = P(x+y)P(x-y)$.
3 replies
OmicronGamma
Jun 2, 2017
NicoN9
40 minutes ago
Inspired by lbh_qys.
sqing   3
N an hour ago by lbh_qys
Source: Own
Let $ a,b>0   $ . Prove that
$$ \frac{a}{a^2+a +b+1}+ \frac{b}{b^2+a +b+1}  \leq  \frac{1}{2} $$$$ \frac{a}{a^2+ab+a+b+1}+ \frac{b}{b^2+ab+a+b+1} \leq   \sqrt 2-1  $$$$\frac{a}{a^2+ab+a+1}+ \frac{b}{b^2+ab+b+1} \leq  \frac{2(2\sqrt 2-1)}{7} $$$$\frac{a}{a^2+ab+b+1}+ \frac{b}{b^2+ab+a+1} \leq  \frac{2(2\sqrt 2-1)}{7} $$
3 replies
sqing
4 hours ago
lbh_qys
an hour ago
Additive set with special property
the_universe6626   1
N an hour ago by jasperE3
Source: Janson MO 1 P2
Let $S$ be a nonempty set of positive integers such that:
$\bullet$ if $m,n\in S$ then $m+n\in S$.
$\bullet$ for any prime $p$, there exists $x\in S$ such that $p\nmid x$.
Prove that the set of all positive integers not in $S$ is finite.

(Proposed by cknori)
1 reply
the_universe6626
Feb 21, 2025
jasperE3
an hour ago
ISI UGB 2025 P4
SomeonecoolLovesMaths   8
N an hour ago by chakrabortyahan
Source: ISI UGB 2025 P4
Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the period of $z$. Determine the total number of points in $S^1$ of period $2025$.
(Hint : $2025 = 3^4 \times 5^2$)
8 replies
SomeonecoolLovesMaths
Sunday at 11:24 AM
chakrabortyahan
an hour ago
So Many Terms
oVlad   7
N 2 hours ago by NuMBeRaToRiC
Source: KöMaL A. 765
Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the following equality for all $x,y\in\mathbb{R}$ \[f(x)f(y)-f(x-1)-f(y+1)=f(xy)+2x-2y-4.\]Proposed by Dániel Dobák, Budapest
7 replies
oVlad
Mar 20, 2022
NuMBeRaToRiC
2 hours ago
Cauchy like Functional Equation
ZETA_in_olympiad   3
N 2 hours ago by jasperE3
Find all functions $f:\bf R^{\geq 0}\to R$ such that $$f(x^2)+f(y^2)=f\left (\dfrac{x^2y^2-2xy+1}{x^2+2xy+y^2}\right)$$for all $x,y>0$ and $xy>1.$
3 replies
ZETA_in_olympiad
Aug 20, 2022
jasperE3
2 hours ago
special polynomials and probability
harazi   12
N 2 hours ago by MathLuis
Source: USA TST 2005, Problem 3, created by Harazi and Titu
We choose random a unitary polynomial of degree $n$ and coefficients in the set $1,2,...,n!$. Prove that the probability for this polynomial to be special is between $0.71$ and $0.75$, where a polynomial $g$ is called special if for every $k>1$ in the sequence $f(1), f(2), f(3),...$ there are infinitely many numbers relatively prime with $k$.
12 replies
harazi
Jul 14, 2005
MathLuis
2 hours ago
Hard to approach it !
BogG   131
N 3 hours ago by Giant_PT
Source: Swiss Imo Selection 2006
Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.
131 replies
BogG
May 25, 2006
Giant_PT
3 hours ago
Functional equation
Amin12   17
N Apr 30, 2025 by bin_sherlo
Source: Iran 3rd round 2017 first Algebra exam
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x}))$$for all positive real numbers $x$ and $y$.
17 replies
Amin12
Aug 7, 2017
bin_sherlo
Apr 30, 2025
Functional equation
G H J
G H BBookmark kLocked kLocked NReply
Source: Iran 3rd round 2017 first Algebra exam
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Amin12
16 posts
#1 • 3 Y
Y by yayitsme, Adventure10, Mango247
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x}))$$for all positive real numbers $x$ and $y$.
This post has been edited 2 times. Last edited by Amin12, Aug 7, 2017, 8:40 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Vietnamisalwaysinmyheart
311 posts
#2 • 4 Y
Y by gemcl, Jonathankirk, Adventure10, Mango247
Here is my solution:
Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ankoganit
3070 posts
#3 • 3 Y
Y by Adventure10, Mango247, math_comb01
Setting $x\mapsto \frac1x$ in the given equation gives $$f\left(f(x)+\frac1y\right)=x+\frac1{f(y)}.$$Call this statement $P(x,y)$. This immediately gives $f$ is injective.

Now comparing $P(x,\tfrac1{f(y)})$ and $P(y,\tfrac1{f(x)})$ gives $$\frac{1}{f\left(\frac1{f(x)}\right)}-\frac{1}{f\left(\frac1{f(y)}\right)}=x-y\implies \frac{1}{f\left(\frac1{f(x)}\right)}=x+k\implies f\left(\frac1{f(x)}\right)=\frac1{x+k}.$$Here $k$ is some constant. Also, comparing $P(\tfrac1{f(x)},y)$ and $P(\tfrac1{f(y)},x)$ and using injectivity, we have $$f\left(f\left(\frac1{f(x)}\right)+\frac1y\right)=f\left(f\left(\frac1{f(y)}\right)+\frac1x\right)\implies f\left(\frac1{f(x)}\right)+\frac1y=f\left(\frac1{f(y)}\right)+\frac1x\implies f\left(\frac1{f(x)}\right)=\frac1x+k'.$$Here $k'$ is another constant. Now this gives $\tfrac1{x+k}=\tfrac1x+k'$ holds for all $x\in\mathbb R^+$, which forces $k=k'=0$. So in fact $f\left(\frac{1}{f(x)}\right)=\frac1x.$ Now $P(\tfrac{1}{f(x)})$ gives $$f\left(\frac1x+\frac1y\right)=\frac1{f(x)}+\frac1{f(y)}.$$Call this new statement $Q(x,y)$.
Now $Q(x,x)$ gives $f(\tfrac2x)=\tfrac2{f(x)}\;(\star).$ Comparing $Q(\tfrac{xy}{x+y},1)$ and $Q(x,\tfrac{y}{y+1})$ and mutilplying y $2$ gives $$\frac2{f(1)}+\frac{2}{f\left(\frac{xy}{x+y}\right)}=\frac{2}{f\left(\frac y{y+1}\right)}+\frac2{f(x)}.$$Using $(\star)$ in each of these terms, we have $f(2)+f\left(\tfrac2x+\tfrac2y\right)=f\left(2+\tfrac{2}{y}\right)+f\left(\tfrac2x\right)$, and replacing $x\mapsto 2x,y\mapsto 2y$, we get $$f(2)+f\left(\frac1x+\frac1y\right)=f\left(2+\frac{1}{y}\right)+f\left(\frac1x\right).$$Now we use the statements $Q(x,y),Q(\tfrac12,y)$ to simplify that into $$f(2)+\frac1{f(x)}+\frac{1}{f(y)}=\frac1{f(\tfrac12)}+\frac1{f(y)}+f\left(\frac1x\right)\implies f\left(\frac1x\right)-\frac1{f(x)}=f(2)-\frac1{f(\tfrac12)}.$$Setting $x=2$, there, we get $f(\tfrac12)+\tfrac1{f(1/2)}=f(2)+\frac1{f(2)}$, and since $f(2)\ne f(1/2)$ because of injectivity, we get $f(2)=\frac1{f(1/2)}$, which in turn implies $f\left(\frac1x\right)=\frac1{f(x)}.$

Now $Q(x,y)$ can be written as $f(\tfrac1x+\tfrac1y)=f(\tfrac1x)+f(\tfrac1y)$, which becomes Cauchy's equation after setting $x\mapsto 1/x,y\mapsto 1/y$. Since the codomain of $f$ is bounded from below, we must have $f(x)=cx$, and only $f(x)=x$ fits.

Edit: Sniped darn :furious:
This post has been edited 2 times. Last edited by Ankoganit, Aug 7, 2017, 3:10 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TLP.39
778 posts
#4 • 2 Y
Y by Adventure10, Mango247
Another solution.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kirilbangachev
71 posts
#5 • 23 Y
Y by TLP.39, Ankoganit, k.vasilev, Xurshid.Turgunboyev, naw.ngs, gemcl, MahdiTA, Kayak, rmtf1111, e_plus_pi, Sillyguy, ValidName, Aryan-23, Arefe, r_ef, maryam2002, Gaussian_cyber, FAA2533, electrovector, Kamikaze-1, Adventure10, TemetNosce, NicoN9
We can rewrite it as:
$$\frac{1}{x}+\frac{1}{f(y)}=f(\frac{1}{y}+f(\frac{1}{x})).$$It is clear that we can replace $x$ by $\frac{1}{x}$ and get:
$$x+\frac{1}{y}=f(\frac{1}{y}+f(x)).$$Suppose that $x_1>f(x_1)$ for some $x_1.$ Then $(x,y)=(x_1,\frac{1}{x_1-f(x_1)})$ gives us $$x_1=f(x_1)-\frac{1}{f(y)}<f(x_1),$$contradiction. So $\boxed{x \le f(x) \hspace{2mm} \forall x}.$ But this means that
$$x+\frac{1}{f(y)}=f(\frac{1}{y}+f(x))\ge \frac{1}{y}+f(x)\ge \frac{1}{y}+x \Longrightarrow$$$$\frac{1}{f(y)}\ge \frac{1}{y}\Longrightarrow \boxed{y\ge f(y) \hspace{2mm} \forall y}.$$Combining the two boxed results gives us $f(x)=x.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anantmudgal09
1980 posts
#6 • 3 Y
Y by e_plus_pi, Adventure10, Mango247
Amin12 wrote:
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f\left(\frac{1}{y}+f\left(\frac{1}{x}\right)\right)$$for all positive real numbers $x$ and $y$.

Equivalently, $$\frac{1}{x}+\frac{1}{f(y)}=f\left(\frac{1}{y}+f\left(\frac{1}{x}\right)\right)$$for all $x,y>0$. Put $t=\tfrac{1}{x}$ thus $t+\tfrac{1}{f(y)}=f\left(f(t)+\tfrac{1}{y}\right)$ for all $t,y>0$. Observe that as $t \rightarrow \infty$ we see $\mathbb{R}(f)$ has no upper bound. Thus, for any $\varepsilon>0$ it is possible to pick $y$ with $\tfrac{1}{f(y)}<\varepsilon$; hence $ \cup [\tfrac{1}{f(y)}, \infty)$ is a subset of $\mathbb{R}(f)$, consequently $f$ is surjective over $\mathbb{R}^{+}$. If $f(a)=f(b)$ then plugging $t=a$ and $t=b$ subsequently, we conclude $a=b$ or $f$ is injective. Thus, $f$ is a bijection on positive reals.

Now substitute $y=\tfrac{1}{f(z)}$ yielding $$f(f(t)+f(z))=t+\frac{1}{f\left(\frac{1}{f(z)}\right)}$$for all $t,z>0$. Swapping $t,z$ fixes the LHS, hence $\frac{1}{f\left(\frac{1}{f(z)}\right)}=z+C$ for some constant $C$ and all $z>0$. Hence $f(f(t)+f(z))=t+z+C$ for all $t,z>0$. Playing the Devil's trick again, we put $x=f(z)$ in the original equation; so $$\frac{1}{f(z)}+\frac{1}{f(y)}=f\left(\frac{1}{y}+\frac{1}{z+C}\right)$$and swap $y,z$; injectivity of $f$ then yields that $y \mapsto \frac{1}{y}-\frac{1}{y+C}$ is a constant function. Thus, $C=0$ and so $f(f(y)+f(z))=y+z$ for all $y,z>0$. Now plug $x \mapsto f\left(\frac{1}{x}\right)$ in $f\left(\frac{1}{f(x)}\right)=\frac{1}{x}$ to conclude that $f\left(\frac{1}{x}\right)=\frac{1}{f(x)}$ for all $x>0$. Now we immediately get $f(f(x))=x$ for all $x>0$ and so $f(a+b)=f(a)+f(b)$ (putting $a=f(y), b=f(z)$); hence $f$ is additive too. Now $f$ is strictly increasing so if $f(x_0)>x_0$ then $x_0=f(f(x_0)>x_0$ and vice-versa. Thus, $f(x_0)=x_0$ for all $x_0>0$ and $f$ is the identity function. It also works. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
stroller
894 posts
#8 • 2 Y
Y by Adventure10, Mango247
Fix $y$ to note that $f$ is injective and $(\frac{1}{f(y)},\infty) \subseteq f$. Now take $y$ with $f(y) \to \infty$ gives $(0,\infty)  = f$. Therefore $f$ is bijective.
Now note that
$$f(x+\frac{1}{f(y)} + \frac1z) =  f(f(f(x) + 1/y ) + 1/z) = f(x) + 1/y + 1/f(z)$$Replace $z$ by $1/z$ in the above relation and consider symmetric equation with $x,z$ swapped we deduce
$$f(x) = 1/f(1/x) + \underbrace{f(z) - 1/f(1/z)}_c$$Fix $z$ and vary $x$ to get using $f$ bijective that $(c,\infty) = f$ so $c = 0$, i.e. $f(z) = \frac 1 {f(1/z)}$.
Now we rewrite original FE as
$$f(f(x) + y) = x + f(y).$$Replace $x$ by $f(x)$ to get
$$f(f^2(x) + y)  = f(x) + f(y) = f(y) + f(x) = f(f^2(y) + f(x)). \qquad\qquad  \dots \dots (1)$$Now use injectivity to get
$f^2(x) = \underbrace{f^2(y) - y}_{c'} + x$. Taking a similar consideration as before with $c$ we see that $c' = 0$. Therefore $f(x)^2 = x$, so $(1)$ becomes Cauchy FE. Extend $f(x)$ by $f(-x)  = -f(x)$ for all $x < 0$ and note that extended $f$ satisfies Cauchy on the reals, and $f(x) > 0$ for all $x > 0$, so $f$ is linear, from which we conclude that $f(x) = x$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
e_plus_pi
756 posts
#9 • 1 Y
Y by Adventure10
Enjoyed this a whole lot :P
Amin12 wrote:
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f\left(\frac{1}{y}+f\left(\frac{1}{x}\right)\right)$$for all positive real numbers $x$ and $y$.

We begin our solution by claiming that $\boxed{f(x) \equiv x \forall \ x \in \mathbb{R^+}}$ is the only solution to the given equation. Note that it indeed works.
$  $

Now, let $P(x,y)$ denote the given assertion.
$(\star) P \left(\frac{1}{x}, \frac{1}{f(y)}\right) : $
\begin{align*}
x + \frac{1}{f(\frac{1}{f(y)})} & = f(f(y) + f(x)) \\
                                                 & = f(f(x) + f(y)) \\
                                                 & = y + \frac{1}{f (\frac{1}{f(x)})} \\
\end{align*}Therefore, let $h(x) =\frac{1}{f \left(\frac{1}{f(x)}\right)} $. Then we have $h(x) - h(y) = x - y \implies h(x) = x + c \forall x \in \mathbb{R^+}$ and some $c \in \mathbb{R}$.
So, $f(\frac{1}{f(y)}) = \frac{1}{y+c} \implies f$ is injective . Now $P(f(x) , y) ; P(f(y),x)$ imply that $c = 0$. So $f(\frac{1}{f(y)}) = \frac{1}{y}$ and hence $f$ is bijective .
Thus, $P(f(x),y ) \implies \frac{1}{f(x)} + \frac{1}{f(y)} = f\left(\frac{1}{x} + \frac{1}{y} \right)$.
$  $
Call the last equation $Q\left(\frac{1}{x} , \frac{1}{y}\right)$. Then, $Q(f(x) , f(y)) : f(f(x) + f(y)) = x + y \forall x, y \in \mathbb{R^+}$.
$(\star \star) Q(x,x) :  f(2f(x))  = 2x$
$  $
$(\star \star \star) Q(2f(x) , 2f(y)): f(2x + 2y ) = 2\cdot (f(x) + f(y))$. (By induction on this, we get $f(2^nx + 2^ny) = 2^nf(x) +2^nf(y)$
In this equation replace $x \mapsto (x+z)$ and observe that:
$$ \underbrace{f(x+z) + f(y) = \frac{1}{2} \cdot \left(f( 2x + 2y + 2z)\right) = f(x+y) + f(z)}_{S(x,y,z)}$$Now using $S(x,x, 3x) : f(2x) + f(3x) = 5 \cdot f(x)$ and $S(x,2x,3x) : 2 \cdot f(3x) - f(2x) = 4 f(x)$.
$  $
Combining both these equations, we get that $f(2x) = 2f(x)$. So , iterating $f$ on both sides we get $f(f(2x)) = f(2f(x)) = 2x \implies f(f(x)) = x \forall x \in  \mathbb{R^+}$.
$ $
So, $f$ is an involution. Now comparing $Q(x,y)$ and $f(f(x+y))$ we see that
$$f(f(x)+f(y)) = x + y = f(f(x+y)) \overset{\text{injection}}{\implies} \underbrace{f(x) + f(y) = f(x+y)}_{\text{Cauchy}} \implies f \equiv \alpha x + \beta $$Plugging this back in $P(x,y)$ we get $\beta = 0$ and $\alpha = 1$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
william122
1576 posts
#11 • 1 Y
Y by Adventure10
Denote the assertion as $P(x,y)$.

As $x\to 0$, we get unbounded values of $f$, and for a fixed value of $y$, we get that $f(x)$ is surjective over $\left(\frac{1}{f(y)},\infty\right)$. So, letting $f(y)$ tend towards infinity gives surjectivity.

If $f(x_1)=f(x_2)$, $P\left(\frac{1}{x_1},y\right),P\left(\frac{1}{x_2},y\right)$ gives $x_1=x_2$, so $f$ is bijective.

Consider $P\left(x,\frac{1}{y}\right)$. As $x$ varies for fixed $y$, we get that the image of $(y,\infty)$ is $\left(\frac{1}{f(1/y)},\infty\right)$. Thus, if $y_1<y_2$, $\frac{1}{f(1/y_1)}<\frac{1}{f(1/y_2)}$, so $f$ is increasing. As it is both increasing and bijective, our function must be continuous.

Consider $P\left(\frac{1}{y-\frac{1}{f(x)}},x\right)$. This gives that $f\left(\frac{1}{x}+f\left(y-\frac{1}{f(x)}\right)\right)=y-\frac{1}{f(x)}+\frac{1}{f(x)}=y$, so it is fixed as $x$ varies. Note that we must have $x>f^{-1}\left(\frac{1}{y}\right)$ to make sure the argument is positive, and as $x$ approaches this lower bound, the LHS gets arbitrarily close to $C=f\left(\frac{1}{f^{-1}\left(1/y\right)}\right)$. The RHS cannot be less than $C$, since it will otherwise be exceeded as $x$ approaches $f^{-1}\left(\frac{1}{y}\right)$. Likewise, it can't be more than $C$. So, we must have $f\left(\frac{1}{x}+f\left(y-\frac{1}{f(x)}\right)\right)=C=f\left(\frac{1}{f^{-1}(1/y)}\right)\implies \frac{1}{x}+f\left(y-\frac{1}{f(x)}\right)=\frac{1}{f^{-1}(1/y)}$. As $x\to\infty$, LHS approaches $f(y)$, so we can get by similar logic that it must always be $f(y)$. Thus, $f^{-1}(1/y)=\frac{1}{f(y)}\implies f\left(\frac{1}{f(y)}\right)=\frac{1}{y}$.

Finally, consider $P(x,f(y))$, which gives $\frac{1}{x}+\frac{1}{f(f(y))}=f\left(\frac{1}{f(y)}+f\left(\frac{1}{x}\right)\right)$. As $x\to\infty$, LHS approaches $\frac{1}{f(f(y))}$ while RHS is always larger, but approaches $\frac{1}{y}$ by above. Using a similar argument, if $\frac{1}{y}>\frac{1}{f(f(y))}$, then we eventualy have RHS>LHS, and if $\frac{1}{f(f(y))}>\frac{1}{y}$, we have the opposite. Hence, $\frac{1}{f(f(y))}=\frac{1}{y}\implies f(f(y))=y$.

Now, we have that $f$ is both an involution and increasing. If it is nonconstant, though, we can find $a<b$ such that $f(a)=b>f(b)=a$. Thus, $f(x)=x$ is the only solution.
This post has been edited 2 times. Last edited by william122, Dec 24, 2019, 12:33 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Functional_equation
530 posts
#12 • 1 Y
Y by amar_04
Amin12 wrote:
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x}))$$for all positive real numbers $x$ and $y$.
This is Hard(and Nice)
Claim 1.$f$ is injective function.
Proof:
$$P(\frac{1}{x},\frac{1}{f(y)})\implies f(f(x)+f(y))=x+\frac{1}{f(\frac{1}{f(y)})}=y+\frac{1}{f(\frac{1}{f(x)})}\implies f(\frac{1}{f(x)})=\frac{1}{x+c}$$$f(\frac{1}{f(x)})=\frac{1}{x+c}\implies f\to injective$
Claim 2.$f(\frac{1}{f(x)})=\frac{1}{x}$
Proof:
$P(f(x),y)\implies \frac{1}{f(x)}+\frac{1}{f(y)}=f(\frac{1}{y}+f(\frac{1}{f(x)}))=f(\frac{1}{y}+\frac{1}{x+c})$
$P(f(y),x)\implies \frac{1}{f(y)}+\frac{1}{f(x)}=f(\frac{1}{x}+f(\frac{1}{f(y)}))=f(\frac{1}{x}+\frac{1}{y+c})$
Then $f(\frac{1}{y}+\frac{1}{x+c})=f(\frac{1}{x}+\frac{1}{y+c})\implies \frac{1}{y}+\frac{1}{x+c}=\frac{1}{x}+\frac{1}{y+c}$
Then $c=0\implies f(\frac{1}{f(x)})=\frac{1}{x}$
$P(f(x),y)\implies f(\frac{1}{x}+\frac{1}{y})=\frac{1}{f(x)}+\frac{1}{f(y)}$
$x=\frac{kt}{k+t}\implies f(\frac{1}{k}+\frac{1}{t}+\frac{1}{y})=\frac{1}{f(y)}+\frac{1}{f(\frac{kt}{k+t})}$
Then
$\frac{1}{f(y)}+\frac{1}{f(\frac{kt}{k+t})}=\frac{1}{f(k)}+\frac{1}{f(\frac{yt}{y+t})}$
$\frac{1}{f(\frac{1}{x})}=g(x)$
Then
$g(\frac{1}{y})+g(\frac{1}{k}+\frac{1}{t})=g(\frac{1}{k})+g(\frac{1}{y}+\frac{1}{t})$
$\frac{1}{y}\to y,\frac{1}{k}\to k,\frac{1}{t}\to t$
Then
$g(y+t)-g(y)=g(k+t)-g(k)\implies g-additive$
And $g:\mathbb{R^+}\rightarrow\mathbb{R^+},additive\implies g(x)=kx+b$
$f(\frac{1}{f(x)})=\frac{1}{x}\implies g(\frac{1}{g(x)})=\frac{1}{x}\implies \frac{k}{kx+b}+b=\frac{1}{x}$
Then $b=0,k=1$
$g(x)=x,x\in R^+\implies f(x)=x,x\in R^+$
This post has been edited 1 time. Last edited by Functional_equation, Jan 5, 2021, 3:50 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Prod55
127 posts
#13
Y by
Let $P(x,y)$ the given assertion.
$P(1/x,1/f(y)): 1/f(1/f(y)))+x=f(f(y)+f(x))$
$y\leftrightarrow x $: $1/f(1/f(y)))+x=1/f(1/f(x)))+y$ so $f(1/f(x))=1/(x+C)$, so $f$ is injective.
Now we have that $P(1/x,1/f(y)) : x+y+C=f(f(x)+f(y)) :Q(x,y)$
$Q(x+z,y): x+y+z+C=f(f(x+z)+f(y))$
$Q(x,y+z): x+y+z+C=f(f(x)+f(y+z))$.
Since $f$ is injective we have that $f(x+z)+f(y)=f(x)+f(y+z)$.
Therefore $x+y+C+f(f(z))=f(f(x)+f(y))+f(f(z))=f(f(x))+f(f(y)+f(z))=f(f(x))+y+z+C$ so $f(f(x))=x+D$.
$P(1/f(x),1/y): f(x)+1/f(1/y))=f(x+y+D)=f(y)+1/f(1/x))$ so $f(x)-1/f(1/x))=E$.
setting $x\leftrightarrow 1/x$ it's simple to show that $E=0$ so $f(x)f(1/x)=1$.
Since $f(1/f(x))=1/(x+C)$ we have that $f(f(x))=x+C$ so $C=D$.
Also $1/x+D=f(f(1/x))=f(1/f(x))=1/f(f(x))=1/(x+D)\Leftrightarrow...\Leftrightarrow D=0$, thus $C=D=0$.
So $f(f(x))=x$ and $f(f(x)+f(y))=x+y$.
$x\rightarrow f(x),y\rightarrow f(y): f(x+y)=f(x)+f(y)$ etc.
This post has been edited 1 time. Last edited by Prod55, Jun 12, 2021, 1:54 PM
Reason: typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Keith50
464 posts
#14
Y by
Answer: $f(x)=\frac{1}{x} \ \ \forall x\in \mathbb{R}^+.$
Proof: It's easy to see that the above function is a solution. Let $P(x,y)$ denote the given assertion, by comparing \[P\left(\frac{1}{x}, \frac{1}{f(1)}\right) \implies \frac{1+xf\left(\frac{1}{f(1)}\right)}{f\left(\frac{1}{f(1)}\right)}=f(f(1)+f(x))\]and \[P\left(1,\frac{1}{f(x)}\right)\implies \frac{1+f\left(\frac{1}{f(x)}\right)}{f\left(\frac{1}{f(x)}\right)}=f(f(x)+f(1))\]we will get $f\left(\frac{1}{f(x)}\right)=\frac{1}{x+C_1}$ where $C_1=\frac{1}{f\left(\frac{1}{f(1)}\right)}-1.$ From here, it's also clear that $f$ is injective. Also, by comparing \[P(f(x),1) \implies \frac{f(x)+f(1)}{f(x)f(1)}=f\left(1+f\left(\frac{1}{f(x)}\right)\right)\]and \[P(f(1),x) \implies \frac{f(1)+f(x)}{f(1)f(x)}=f\left(\frac{1}{x}+f\left(\frac{1}{f(1)}\right)\right)\]we will get $f\left(1+f\left(\frac{1}{f(x)}\right)\right)=f\left(\frac{1}{x}+f\left(\frac{1}{f(1)}\right)\right) \implies f\left(\frac{1}{f(x)}\right)=\frac{1}{x}+C_2$ where $C_2=f\left(\frac{1}{f(1)}\right)-1.$ Therefore, we have $\frac{1}{x+C_1}=\frac{1}{x}+C_2$ or equivalently, $C_2x^2+C_1C_2x+C_1=0.$ Since this holds for all positive real $x$, it must be the case where $C_1=C_2=0$ which implies $f\left(\frac{1}{f(x)}\right)=\frac{1}{x}.$ Now notice that \[P\left(\frac{1}{x}, \frac{1}{f(x)}\right) \implies f(2f(x))=2x\]and so $4f(x)=f(2f(2f(x)))=f(4x).$ Then, \[P\left(\frac{1}{x}, \frac{1}{f(3x)}\right)\implies f(f(3x)+f(x))=4x=f(2f(2x)) \implies f(3x)+f(x)=2f(2x)\]and \[P\left(\frac{1}{2x}, \frac{1}{f(4x)}\right)\implies f(4f(x)+f(2x))=f(f(4x)+f(2x))=6x=f(2f(3x)) \implies 4f(x)+f(2x)=2f(3x)\]give us \[4f(2x)-2f(x)=2f(3x)=4f(x)+f(2x) \implies f(2x)=2f(x) \ \ \forall  x\in \mathbb{R}^{+}.\]Hence, $2f(f(x))=f(2f(x))=2x \implies f(f(x))=x$ and $f\left(\frac{1}{x}\right)=f\left(\frac{1}{f(f(x))}\right)=\frac{1}{f(x)}.$ Lastly, \[P\left(f\left(\frac{1}{x}\right), \frac{1}{y}\right)\implies f(x+y)=\frac{f\left(\frac{1}{x}\right)+f\left(\frac{1}{y}\right)}{f\left(\frac{1}{x}\right)f\left(\frac{1}{y}\right)}=f(x)+f(y)\]implies $f$ is additive over the positive reals, thus $f$ is linear and letting $f(x)=ax+b$ where $a,b$ are constants, we see that since $f(f(x))=x \implies a^2x+ab+b=x \implies a=1, b=0$, $\boxed{f(x)=x}$ is the only solution. $\quad \blacksquare$
This post has been edited 2 times. Last edited by Keith50, Jul 7, 2021, 5:21 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mahdi_Mashayekhi
695 posts
#15
Y by
$\frac{x+f(y)}{xf(y)} = \frac{1}{f(y)} + \frac{1}{x}$ Now put $\frac{1}{x}$ instead of $x$ in equation. Let $P(x,y) : \frac{1}{f(y)} + x = f(\frac{1}{y} + f(x))$.
Let $f(a) = f(b)$ then $P(a,y) , P(b,y)$ implies that $f$ is injective.
$P(x,\frac{1}{f(y)}) : \frac{1}{f(\frac{1}{f(y)})} + x = f(f(y) + f(x)) = \frac{1}{f(\frac{1}{f(x)})} + y \implies \frac{1}{f(\frac{1}{f(x)})} - x = t \implies f(\frac{1}{f(x)}) = \frac{1}{x+t}$
$P(f(x),y) : f(\frac{1}{y} + \frac{1}{x+t}) = \frac{1}{f(y)} + \frac{1}{f(x)} = f(\frac{1}{x} + \frac{1}{y+t}) \implies \frac{1}{y} + \frac{1}{x+t} = \frac{1}{x} + \frac{1}{y+t} \implies t = 0 \implies f(\frac{1}{f(x)}) = \frac{1}{x}$
$P(x,\frac{1}{f(y)}) : \frac{1}{f(\frac{1}{f(y)})} + x = f(f(y) + f(x)) \implies f(f(y) + f(x)) = x+y$ Let $f(f(y) + f(x)) = x+y$ be $Q(x,y)$.
$Q(x,x) , Q(x-t,x+t) : f(x+t) - f(x) = f(x) - f(x-t)$ which holds for any $x > t > 0$ which implies that $f$ is linear so $f(x)=  ax + b$.
we had $f(f(y) + f(x)) = x+y \implies f(a(x+y)+2b) = x+y \implies a^2(x+y) + 2ab + b = x+y \implies (a^2-1)(x+y) + 2ab + b = 0$ which since $a,b$ are constant but $x,y$ are not implies that $a^2-1 = 0 \implies a = 1$ so $x+y + 2b + b = x+y \implies b = 0$ so $f(x) = ax + b = x$ which clearly works.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ZETA_in_olympiad
2211 posts
#16 • 1 Y
Y by Mango247
Also see here.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Knty2006
50 posts
#17
Y by
Man this took really long

Note that the above is equivalent to $\frac{1}{f(y)}+\frac{1}{x}=f(\frac{1}{y}+f(\frac{1}{x}))$, which also implies injective as a result

Let $P(x,y) : \frac{1}{f(y)}+\frac{1}{x}=f(\frac{1}{y}+f(\frac{1}{x}))$
Setting $P(f(x),y)=P(f(y),x)$, we get $\frac{1}{y}-f(\frac{1}{f(y)})=\frac{1}{x}-f(\frac{1}{f(x)})$

This implies that $\frac{1}{x}-f(\frac{1}{f(x)})=-c$ for some constant $c$ over all values of $x$

Now, setting $P(x,\frac{1}{f(\frac{1}{y})})=(y,\frac{1}{f(\frac{1}{x})})$
$\frac{1}{x}-\frac{1}{x+c}=\frac{1}{y}-\frac{1}{y+c}$

Note this only holds iff $c=0$

Taking $P(x,\frac{1}{f(y)})$
$y+\frac{1}{x}=f(f(y)+f(\frac{1}{x}))$
$y+x=f(f(y)+f(x))$

Now note, if $a+b=c+d$
$f(f(a)+f(b))=a+b=c+d=f(f(c)+f(d))$
Due to injectivity, this implies $f(a)+f(b)=f(c)+f(d)$

Note $2f(3x)=f(4x)+f(2x)=3f(2x)$
Also, $5f(2x)=2f(3x)+2f(2x)=2f(4x)+2f(x)=4f(2x)+2f(x)$, so $f(2x)=2f(x)$

Recall $P(y,f(y))$ implies $\frac{f(y)}{2}f(\frac{2}{y})=1$
However, together with $f(2x)=2f(x)$, we have $\frac{1}{f(x)}=f(\frac{1}{x})$

Therefore, we have that $f(f(x))=x$

Also,$ P(\frac{1}{x},\frac{1}{y})$ gives us $f(y)+x=f(y+f(x))$ , Since $f$ is surjective, varying the value of $f(x)$, we have that $f$ is a strictly increasing function
FTSOC suppose $f(x)=a$ where $a>x$ Then, note $f(a)=x<a<f(x)$ contradiction. The same holds for when $a<x$

Hence, $f(x)=x$ for all values of $x$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ThisNameIsNotAvailable
442 posts
#18
Y by
Amin12 wrote:
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x}))$$for all positive real numbers $x$ and $y$.

My 400th post. Let $P(x,y)$ be the assertion of the given FE, which is $$f\left(\frac1{y}+f\left(\frac1{x}\right)\right)=\frac1{f(y)}+\frac1{x},\quad\forall x,y>0.$$Assume that $f(a)=f(b)$, then $P(1/a,y)$ and $P(1/b,y)$ give $a=b$ or $f$ is injective.
Hence comparing $P(f(x),y)$ and $P(f(y),x)$, we easily get $$\frac1{y}+f\left(\frac1{f(x)}\right)=\frac1{x}+f\left(\frac1{f(y)}\right)\implies f\left(\frac1{f(x)}\right)=\frac1{x}+c.$$Similarly, comparing $P(1/x,1/f(y))$ and $P(1/y,1/f(x))$, we get $$f\left(\frac1{f(x)}\right)=\frac1{x+d}\implies\frac1{x}+c=\frac1{x+d},$$for all $x>0$. Let $x\to\infty$, we get $c=d=0$, so $f\left(\frac1{f(x)}\right)=\frac1{x}$ and $P(1/x,1/f(y))$ gives $$Q(x,y):f(f(x)+f(y))=x+y,\quad\forall x,y>0.$$$Q(f(x)+f(y),y)$ gives $$f(x+y+f(y))=f(x)+y+f(y).$$Plugging $x$ by $x+f(x)$ into the above FE and changing the role of $x,y$, by the injectivity, we get $$f(x+f(x))=x+f(x)+d.$$If $d>0$, $Q(x+f(x),d)$ and the injectivity give $d+f(d)=0$, absurb. Thus $d=0$, so $Q(x,f(x))$ gives $$f(f(x)+f(f(x)))=x+f(x)=f(x+f(x))\implies f(f(x))=x.$$$Q(f(x),f(y))$ immediately implies $f$ is additive, so after checking, we get $f(x)=x$ for all $x>0$ is a solution.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ezpotd
1272 posts
#19
Y by
Rewrite the assertion as $\frac 1x + \frac{1}{f(y)} = f(\frac 1y + f(\frac 1x))$.

Claim: $f$ is bijective.
Proof: For injectivity, we can vary $\frac 1x$. For surjectivity, observe we can hit any value above $\frac{1}{f(y)}$, since we can make $\frac{1}{f(y)}$ as small as we want we are done.

Now let $\frac 1y = a$, we have $\frac{1}{f(\frac 1a)} < f(a + k)$ as $k$ is a positive real. Then we have $\frac 1x + \frac{1}{f(y)} = f(\frac 1y + f(\frac 1x)) > \frac{1}{f(\frac{1}{f(x)})}$, so letting $\frac{1}{f(y)}$ approach zero gives $f(\frac{1}{f(x)}) \ge \frac 1x$. Now substitute $x = f(k)$, so we have $\frac{1}{f(k)} + \frac{1}{f(y)} = f(f(\frac{1}{f(k)}) + \frac 1y ) = f(\frac 1k + \frac 1y + c)$ for $c = f(\frac{1}{f(k)}) - \frac 1k \ge 0)$. Now observe each pair $(k,y)$ results in exactly one value of $c$, which is the same as the value of $c$ given by $(y,k)$, but also this value is uniquely determined by $k$ so $c$ is constant, thus $f(\frac{1}{f(x)}) = \frac 1x + c$, but since the left hand side gets as small as we want we must have $c = 0$ and $\frac{1}{f(x)}+ \frac{1}{f(y)}= f(\frac 1x + \frac 1y)$.

Now let $f(a)= 1, f(\frac{1}{f(a)} ) = f(1) = a$, then we have $f(\frac{1}{f(1)}) =f(\frac 1a) = 1$, so $a = \frac 1a$ giving $a = 1$.

Now we prove that $f$ is the identity. Assume $a < b$ but $f(a) \ge f(b)$. Now we have $\frac{1}{f(a)} \le\frac{1}{f(b)} < f(\frac 1b + k) = f(\frac 1a)$, giving $f(a)f(\frac 1a) > 1$. Clearly, $a$ cannot be $1$, so $f(x) > 1$ for $x > 1$. Likewise, assume $\frac{1}{f(x)} > 1 $, which gives $\frac 1x > 1$, so $f(x) > 1$ iff $x  >1$. This fact carries the rest of the solution, we can now proceed with a standard rational extension.

First we solve $f$ over rationals. Let $Q$ be the assertion $\frac{1}{f(x)} + \frac{1}{f(y)} = f(\frac 1x + \frac 1y)$. Now $Q(1,1)$ gives $f(2) = 2$, then we can use the assertion $R$, being $f(\frac{1}{f(x)}) = \frac 1x$ to get $f(\frac 12) = 2$. Now we can always induct, do $Q(1, \frac 1n)$ to get $f(n + 1) =n + 1$ and $R(n + 1)$ to get $f(\frac{1}{n + 1}) = \frac{1}{n +1}$. Now to get all rationals we induct on the denominator, we can use $Q(\frac 1n, 2)$ to get all rationals with denominator $2$, then use $Q(\frac 1n, 3)$ and $Q(\frac 1n, \frac 32)$ to get all rationals with denominator $3$, and so one and so forth we win.

To finish, we prove $f(r) = r$ for all reals. First take $r > 1$. Assume $f(r) > r$. Then there exists some rational $q$ with $\frac{1}{f(q)} + \frac{1}{f(r)} < 1 < \frac 1q + \frac 1r$, contradiction. Symmetrical argument proves $f(r) = r$ for $r > 1$. Now consider $R(\frac 1r)$, this gives $f(\frac{1}{f(\frac 1r)}) = r$, giving $\frac 1r = f(\frac 1r)$ by injectivity.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bin_sherlo
728 posts
#21
Y by
\[\frac{1}{f(y)}+x=f(\frac{1}{y}+f(x))\]Answer is $f(x)=x$ which holds. Let $P(x,y)$ be the assertion.
Claim: $f$ is bijective.
Proof: If $f(a)=f(b)$, compare $P(a,y)$ and $P(b,y)$ to get contradiction. Fix $y$ and increase $x$ to see that $f$ takes all sufficiently large positive values. We can pick $1/f(y)$ sufficiently small thus, $f$ is surjective.
Claim: $f(\frac{1}{f(x)})=\frac{1}{x}$.
Proof: Plug $P(x,1/f(y))$ in order to observe that
\[\frac{1}{f(\frac{1}{f(y)})}+x=f(f(x)+f(y))=\frac{1}{f(\frac{1}{f(x)})}+y\implies x-\frac{1}{f(\frac{1}{f(x)})}=y-\frac{1}{f(\frac{1}{f(y)})}\]Since this implies $x-1/f(1/f(x))$ is constant and it's smaller than any positive $y$, it must be a nonpositive constant. Let $\frac{1}{f(\frac{1}{f(x)})}=x+c$ or $f(\frac{1}{f(x)})=\frac{1}{x+c}$ where $c\geq 0$. By symmetry and injectivity we have
\[f(\frac{1}{x}+\frac{1}{y+c})=f(\frac{1}{x}+f(\frac{1}{f(y)}))=\frac{1}{f(y)}+\frac{1}{f(x)}=f(\frac{1}{y}+f(\frac{1}{f(x)}))=f(\frac{1}{y}+\frac{1}{x+c})\]Thus, $\frac{1}{x}-\frac{1}{x+c}=\frac{c}{x(x+c)}$ is constant which requires $c=0$. So $f(1/f(x))=1/x$ as we have claimed.
Claim: $f$ is involution and $f(x)f(\frac{1}{x})=1$.
Proof: $P(x,1/f(y))$ gives $x+y=f(f(x)+f(y)) $. We get $f(f(x)+f(y+z))=x+y+z=f(f(x+z)+f(y))$ and injectivity implies $f(x+y)-f(x)$ is independent of $x$. Let $f(x+y)-f(x)=h(y)$. Since $h(x)+f(y)=f(x+y)=h(y)+f(x)$ we observe $h(x)=f(x)+d$. Thus, $f(x+y)=f(x)+f(y)+d$.
\[f(f(x))+f(\frac{1}{y})+d=f(f(x)+\frac{1}{y})=x+\frac{1}{f(y)}\]$f(f(x))-x=t$ and $f(\frac{1}{y})-\frac{1}{f(y)}=r$. Since $r=f(\frac{1}{f(x)})-\frac{1}{f(f(x))}=\frac{1}{x}-\frac{1}{x+t}=\frac{t}{x(x+t)}$, we must have $t=0$ which implies $r=0$. Thus, $f$ is an involution and $f(x)f(\frac{1}{x})=1$.
Claim: $f$ is additive.
Proof: $P(f(x),1/y)$ yields $f(x)+f(y)=f(x+y)$.

Since $f$ is additive and $f$ takes values on positive reals, $f$ is Cauchy function hence $f(x)=cx$ which implies $c=1$. So $f(x)=x$ is the only solution as desired.$\blacksquare$
Z K Y
N Quick Reply
G
H
=
a