Join our free webinar April 22 to learn about competitive programming!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
9 AMC 8 Scores
ChromeRaptor777   102
N an hour ago by K1mchi_
As far as I'm certain, I think all AMC8 scores are already out. Vote above.
102 replies
ChromeRaptor777
Apr 1, 2022
K1mchi_
an hour ago
Area of Polygon
AIME15   47
N an hour ago by ReticulatedPython
The area of polygon $ ABCDEF$, in square units, is

IMAGE

\[ \textbf{(A)}\ 24 \qquad
\textbf{(B)}\ 30 \qquad
\textbf{(C)}\ 46 \qquad
\textbf{(D)}\ 66 \qquad
\textbf{(E)}\ 74
\]
47 replies
AIME15
Jan 12, 2009
ReticulatedPython
an hour ago
Geometry Transformation Problems
ReticulatedPython   6
N 2 hours ago by ReticulatedPython
Problem 1:
A regular hexagon of side length $1$ is rotated $360$ degrees about one side. The space through which the hexagon travels during the rotation forms a solid. Find the volume of this solid.

Problem 2:

A regular octagon of side length $1$ is rotated $360$ degrees about one side. The space through which the octagon travels through during the rotation forms a solid. Find the volume of this solid.

Source:Own

Hint

Useful Formulas
6 replies
ReticulatedPython
Apr 17, 2025
ReticulatedPython
2 hours ago
Concurrency with 10 lines
oVlad   1
N 3 hours ago by kokcio
Source: Romania EGMO TST 2017 Day 1 P1
Consider five points on a circle. For every three of them, we draw the perpendicular from the centroid of the triangle they determine to the line through the remaining two points. Prove that the ten lines thus formed are concurrent.
1 reply
oVlad
Today at 1:31 PM
kokcio
3 hours ago
Concurrence, Isogonality
Wictro   40
N 4 hours ago by CatinoBarbaraCombinatoric
Source: BMO 2019, Problem 3
Let $ABC$ be an acute scalene triangle. Let $X$ and $Y$ be two distinct interior points of the segment $BC$ such that $\angle{CAX} = \angle{YAB}$. Suppose that:
$1)$ $K$ and $S$ are the feet of the perpendiculars from from $B$ to the lines $AX$ and $AY$ respectively.
$2)$ $T$ and $L$ are the feet of the perpendiculars from $C$ to the lines $AX$ and $AY$ respectively.
Prove that $KL$ and $ST$ intersect on the line $BC$.
40 replies
Wictro
May 2, 2019
CatinoBarbaraCombinatoric
4 hours ago
Bogus Proof Marathon
pifinity   7605
N 4 hours ago by e_is_2.71828
Hi!
I'd like to introduce the Bogus Proof Marathon.

In this marathon, simply post a bogus proof that is middle-school level and the next person will find the error. You don't have to post the real solution :P

Use classic Marathon format:
[hide=P#]a1b2c3[/hide]
[hide=S#]a1b2c3[/hide]


Example posts:

P(x)
-----
S(x)
P(x+1)
-----
Let's go!! Just don't make it too hard!
7605 replies
pifinity
Mar 12, 2018
e_is_2.71828
4 hours ago
Prove excircle is tangent to circumcircle
sarjinius   7
N 4 hours ago by markam
Source: Philippine Mathematical Olympiad 2025 P4
Let $ABC$ be a triangle with incenter $I$, and let $D$ be a point on side $BC$. Points $X$ and $Y$ are chosen on lines $BI$ and $CI$ respectively such that $DXIY$ is a parallelogram. Points $E$ and $F$ are chosen on side $BC$ such that $AX$ and $AY$ are the angle bisectors of angles $\angle BAE$ and $\angle CAF$ respectively. Let $\omega$ be the circle tangent to segment $EF$, the extension of $AE$ past $E$, and the extension of $AF$ past $F$. Prove that $\omega$ is tangent to the circumcircle of triangle $ABC$.
7 replies
sarjinius
Mar 9, 2025
markam
4 hours ago
Easy geo
oVlad   3
N 5 hours ago by Primeniyazidayi
Source: Romania EGMO TST 2019 Day 1 P1
A line through the vertex $A{}$ of the triangle $ABC{}$ which doesn't coincide with $AB{}$ or $AC{}$ intersectes the altitudes from $B{}$ and $C{}$ at $D{}$ and $E{}$ respectively. Let $F{}$ be the reflection of $D{}$ in $AB{}$ and $G{}$ be the reflection of $E{}$ in $AC{}.$ Prove that the circles $ABF{}$ and $ACG{}$ are tangent.
3 replies
oVlad
Today at 1:45 PM
Primeniyazidayi
5 hours ago
abc(a+b+c)=3, show that prod(a+b)>=8 [Indian RMO 2012(b) Q4]
Potla   28
N 5 hours ago by mihaig
Let $a,b,c$ be positive real numbers such that $abc(a+b+c)=3.$ Prove that we have
\[(a+b)(b+c)(c+a)\geq 8.\]
Also determine the case of equality.
28 replies
Potla
Dec 2, 2012
mihaig
5 hours ago
In triangle \( PQR \), points \( A, B, C, D, E, F \) are constructed as follows:
Jackson0423   0
5 hours ago
In triangle \( PQR \), points \( A, B, C, D, E, F \) are constructed as follows: Points \( A \) and \( B \) lie on the extension of side \( QR \) such that \( AP = BP = QR \). Points \( C \) and \( D \) lie on the extension of side \( PQ \) such that \( CR = DR = PQ \). Points \( E \) and \( F \) lie on the extension of side \( RP \) such that \( EQ = FQ = RP \).

The points are placed in a clockwise order around triangle \( PQR \).

Prove that:
\[
\angle ACE + \angle FBD + \angle EAC = 180^\circ.
\]
0 replies
Jackson0423
5 hours ago
0 replies
Similar triangles formed by angular condition
Mahdi_Mashayekhi   5
N Today at 2:02 PM by sami1618
Source: Iran 2025 second round P3
Point $P$ lies inside of scalene triangle $ABC$ with incenter $I$ such that $:$
$$ 2\angle ABP = \angle BCA , 2\angle ACP = \angle CBA $$Lines $PB$ and $PC$ intersect line $AI$ respectively at $B'$ and $C'$. Line through $B'$ parallel to $AB$ intersects $BI$ at $X$ and line through $C'$ parallel to $AC$ intersects $CI$ at $Y$. Prove that triangles $PXY$ and $ABC$ are similar.
5 replies
Mahdi_Mashayekhi
Apr 19, 2025
sami1618
Today at 2:02 PM
Easy Geometry
TheOverlord   33
N Today at 1:37 PM by math.mh
Source: Iran TST 2015, exam 1, day 1 problem 2
$I_b$ is the $B$-excenter of the triangle $ABC$ and $\omega$ is the circumcircle of this triangle. $M$ is the middle of arc $BC$ of $\omega$ which doesn't contain $A$. $MI_b$ meets $\omega$ at $T\not =M$. Prove that
$$ TB\cdot TC=TI_b^2.$$
33 replies
TheOverlord
May 10, 2015
math.mh
Today at 1:37 PM
Existence of a circle tangent to four lines
egxa   3
N Today at 1:36 PM by mathuz
Source: All Russian 2025 10.2
Inside triangle \(ABC\), point \(P\) is marked. Point \(Q\) is on segment \(AB\), and point \(R\) is on segment \(AC\) such that the circumcircles of triangles \(BPQ\) and \(CPR\) are tangent to line \(AP\). Lines are drawn through points \(B\) and \(C\) passing through the center of the circumcircle of triangle \(BPC\), and through points \(Q\) and \(R\) passing through the center of the circumcircle of triangle \(PQR\). Prove that there exists a circle tangent to all four drawn lines.
3 replies
egxa
Apr 18, 2025
mathuz
Today at 1:36 PM
Two very hard parallel
jayme   0
Today at 12:46 PM
Source: own inspired by EGMO
Dear Mathlinkers,

1. ABC a triangle
2. D, E two point on the segment BC so that BD = DE= EC
3. M, N the midpoint of ED, AE
4. H the orthocenter of the acutangle triangle ADE
5. 1, 2 the circumcircle of the triangle DHM, EHN
6. P, Q the second point of intersection of 1 and BM, 2 and CN
7. U, V the second points of intersection of 2 and MN, PQ.

Prove : UV is parallel to PM.

Sincerely
Jean-Louis
0 replies
jayme
Today at 12:46 PM
0 replies
two solutions
τρικλινο   10
N Apr 14, 2025 by Safal
in a book:CORE MATHS for A-LEVEL ON PAGE 41 i found the following


1st solution


$x^2-5x=0$



$ x(x-5)=0$



hence x=0 or x=5



2nd solution



$x^2-5x=0$

$x-5=0$ dividing by x



hence the solution x=0 has been lost



is the above correct?
10 replies
τρικλινο
Apr 12, 2025
Safal
Apr 14, 2025
two solutions
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
τρικλινο
502 posts
#1
Y by
in a book:CORE MATHS for A-LEVEL ON PAGE 41 i found the following


1st solution


$x^2-5x=0$



$ x(x-5)=0$



hence x=0 or x=5



2nd solution



$x^2-5x=0$

$x-5=0$ dividing by x



hence the solution x=0 has been lost



is the above correct?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Safal
168 posts
#2
Y by
2nd Solution is basically wrong. Why? Here is the explanation.

$$x(x-5)=0$$Then there are two cases either $x=0$ or $x\neq 0$.When we are admitting the case $x=0$ we cannot divide by $0$. So, in the case we apply divison by $x$ then $x\neq 0$ is a solid prerequisite to do so.Thus, $x-5=0$ from $x(x-5)=0$ we must take the assumption in hand that $x\neq 0$. For example take the extension of the same problem in $\mathbb{F}_5$ then the same problem reads $$x^2=0$$,implying only one solution with optimistic repetation of root $0$, two times that is the multiplicity of $0$ in $x^2$. Thankfully, we are lucky enough that we are in the field of $\text{char}$ $0$.The reason is that, the book you mention was a book for below 10std (as far as I remember it is below 10th std) students, where prerequisite assumption is that ,we should work on field of $\text{char}$ $0$.
This post has been edited 10 times. Last edited by Safal, Apr 12, 2025, 7:52 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
τρικλινο
502 posts
#3
Y by
Safal wrote:
2nd Solution is basically wrong. Why? Here is the explanation.

$$x(x-5)=0$$Then there are two cases either $x=0$ or $x\neq 0$.When we are admitting the case $x=0$ we cannot divide by $0$. So, in the case we apply divison by $x$ then $x\neq 0$ is a solid prerequisite to do so.Thus, $x-5=0$ from $x(x-5)=0$ we must take the assumption in hand that $x\neq 0$. For example take the extension of the same problem in $\mathbb{F}_5$ then the same problem reads $$x^2=0$$,implying only one solution with optimistic repetation of root $0$, two times that is the multiplicity of $0$ in $x^2$. Thankfully, we are lucky enough that we are in the field of $\text{char}$ $0$.The reason is that, the book you mention was a book for below 10std (as far as I remember it is below 10th std) students, where prerequisite assumption is that ,we should work on field of $\text{char}$ $0$.

so how do we get x=0 or x=5 ,since we assumed $x\neq 0$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maxamc
549 posts
#4
Y by
Move this to MSM, reported
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Safal
168 posts
#5
Y by
τρικλινο wrote:
Safal wrote:
2nd Solution is basically wrong. Why? Here is the explanation.

$$x(x-5)=0$$Then there are two cases either $x=0$ or $x\neq 0$.When we are admitting the case $x=0$ we cannot divide by $0$. So, in the case we apply divison by $x$ then $x\neq 0$ is a solid prerequisite to do so.Thus, $x-5=0$ from $x(x-5)=0$ we must take the assumption in hand that $x\neq 0$. For example take the extension of the same problem in $\mathbb{F}_5$ then the same problem reads $$x^2=0$$,implying only one solution with optimistic repetation of root $0$, two times that is the multiplicity of $0$ in $x^2$. Thankfully, we are lucky enough that we are in the field of $\text{char}$ $0$.The reason is that, the book you mention was a book for below 10std (as far as I remember it is below 10th std) students, where prerequisite assumption is that ,we should work on field of $\text{char}$ $0$.

so how do we get x=0 or x=5 ,since we assumed $x\neq 0$.

If you read carefully I haven't said that we cannot get $x=0$.The assumption whenever $x\neq 0$ we get $x=5$ else we get the case $x=0$.I can explain you more but the fact is I cannot use argument of field theory to explain it in total details.The reason why it's actually the case lies in field theory logics.
This post has been edited 1 time. Last edited by Safal, Apr 13, 2025, 6:23 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
τρικλινο
502 posts
#6
Y by
what is field theory logic.
IS the logic that suports the development of field theory?
THIS post should not be moved to Middle School Math
Because in the 2nd solution we have the answer : x different than zero this implies x=5
And according to logic this is equivelant to x=0 or x=5.Hence no solution is lost as the book claims
There for it should be removed back to at least college algebra although i doupt if even there anyone knew of that solution
WEmake use of the law of propositional calculus: ¬p implies q this is equivelant to p or q
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Safal
168 posts
#7
Y by
"If you judge a fish because it cannot climb a tree , it will be foolish"-Unknown.

I am not commenting further in this post thank you.

Thanks to aops for moving it to MSM and I support it.
This post has been edited 1 time. Last edited by Safal, Apr 13, 2025, 4:51 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SpeedCuber7
1813 posts
#8
Y by
@triklino dude that's an awesome username i didn't even know greek letters were allowed lol
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sadas123
1228 posts
#9
Y by
Proof: $x^2-5x=0$ Which means that the roots of this equation have to be real so we can use an method that is lost in the darkness called factoring. We can factor out the $x$ from each of the terms on the left hand side and get $x(x-5)=0$ which with more logic we can find that the possible outcomes is that if the Parantheses are 0 or the x=0 so first we can subsitute a value of x into that to make the value 0 so we get that x=5 and we finally get the solutions of $x=5$ and $x=0$ and to wrap up our proof we can prove that factoring is the best way to go because with quadratics you would only find 2 possibiliteis or 1 depending on the plus minus. And the other thing is that if you divide by x and just solve it with algebra then you will only get the solution of 5. Thus, proving that factoring is the best method out of all of them. We can use the remainder theorem to prove this which can be done easily. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
τρικλινο
502 posts
#10
Y by
please read the previous posts


The question here is not which is the best method to solve the problem,but if we lose a solution if we solve the problem by dividing the equation by a non zero x
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Safal
168 posts
#13
Y by
Dear Triklino , I am high yesterday I am sorry for being rude. Can you please explain your Question properly that is what the thing you exactly want to know. According to what I understand, you wanted to know why in 2nd Solution $x=0$ is lost? right. Well forget about field theory and all that, Let me explain it in layman's term what is actually happening. In second solution , the solution $x=0$ is not actually lost. The reason we are getting $x=5$ but not $x=0$ is beacuse when we are dividing by $x$ we making an assumption that $x\neq 0$ and since we are making this assumption the solution $x=0$ is lost. For example when we divide by $x-5$ the solution $x=5$ is lost why $x-5=y(say)$ and we are assuming $y\neq 0$ which is equivalent to $x\neq 5$. Now divison by zero is not possible which is not at all very easy to explain. Now $x=5$ and $x=0$ is not possible at the same time. Thus either $x=0$ or $x=5$.

Now why I am talking about field beacuse $0$ and $5$ can be same when we are in a field of $\text{char} 5$. If you are avoid knowing what is field that's perfectly fine to learn later, but just in layman's term note that $0=5$ is possible in finite fields of charecteristic $5$.

Well I like sour grapes but fox will be happy if he clear your doubt thanks.

I hope it is clear now. If it is not then text me in dm.
Z K Y
N Quick Reply
G
H
=
a