Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a June Highlights and 2025 AoPS Online Class Information
jlacosta   0
Monday at 3:57 PM
Congratulations to all the mathletes who competed at National MATHCOUNTS! If you missed the exciting Countdown Round, you can watch the video at this link. Are you interested in training for MATHCOUNTS or AMC 10 contests? How would you like to train for these math competitions in half the time? We have accelerated sections which meet twice per week instead of once starting on July 8th (7:30pm ET). These sections fill quickly so enroll today!

[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC 10 Problem Series[/list]
For those interested in Olympiad level training in math, computer science, physics, and chemistry, be sure to enroll in our WOOT courses before August 19th to take advantage of early bird pricing!

Summer camps are starting this month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have a transformative summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]June 5th, Thursday, 7:30pm ET: Open Discussion with Ben Kornell and Andrew Sutherland, Art of Problem Solving's incoming CEO Ben Kornell and CPO Andrew Sutherland host an Ask Me Anything-style chat. Come ask your questions and get to know our incoming CEO & CPO!
[*]June 9th, Monday, 7:30pm ET, Game Jam: Operation Shuffle!, Come join us to play our second round of Operation Shuffle! If you enjoy number sense, logic, and a healthy dose of luck, this is the game for you. No specific math background is required; all are welcome.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Jun 22 - Nov 2
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3
Wednesday, Sep 24 - Dec 17

Precalculus
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Wednesday, Jun 25 - Dec 17
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Monday, Jun 30 - Jul 21
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Sunday, Jun 22 - Sep 21
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Wednesday, Jun 11 - Aug 27
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Sunday, Jun 22 - Sep 1
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Monday, Jun 23 - Dec 15
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Monday at 3:57 PM
0 replies
f this \8char
v4913   30
N 7 minutes ago by eg4334
Source: EGMO 2022/2
Let $\mathbb{N}=\{1, 2, 3, \dots\}$ be the set of all positive integers. Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for any positive integers $a$ and $b$, the following two conditions hold:
(1) $f(ab) = f(a)f(b)$, and
(2) at least two of the numbers $f(a)$, $f(b)$, and $f(a+b)$ are equal.
30 replies
v4913
Apr 9, 2022
eg4334
7 minutes ago
Weird length condition
Taco12   16
N 41 minutes ago by lpieleanu
Source: USA January Team Selection Test for EGMO 2023, Problem 4
Let $ABC$ be a triangle with $AB+AC=3BC$. The $B$-excircle touches side $AC$ and line $BC$ at $E$ and $D$, respectively. The $C$-excircle touches side $AB$ at $F$. Let lines $CF$ and $DE$ meet at $P$. Prove that $\angle PBC = 90^{\circ}$.

Ray Li
16 replies
Taco12
Jan 16, 2023
lpieleanu
41 minutes ago
ABC is similar to XYZ
Amir Hossein   56
N an hour ago by lksb
Source: China TST 2011 - Quiz 2 - D2 - P1
Let $AA',BB',CC'$ be three diameters of the circumcircle of an acute triangle $ABC$. Let $P$ be an arbitrary point in the interior of $\triangle ABC$, and let $D,E,F$ be the orthogonal projection of $P$ on $BC,CA,AB$, respectively. Let $X$ be the point such that $D$ is the midpoint of $A'X$, let $Y$ be the point such that $E$ is the midpoint of $B'Y$, and similarly let $Z$ be the point such that $F$ is the midpoint of $C'Z$. Prove that triangle $XYZ$ is similar to triangle $ABC$.
56 replies
Amir Hossein
May 20, 2011
lksb
an hour ago
Cubes and squares
y-is-the-best-_   61
N an hour ago by ezpotd
Source: IMO 2019 SL N2
Find all triples $(a, b, c)$ of positive integers such that $a^3 + b^3 + c^3 = (abc)^2$.
61 replies
y-is-the-best-_
Sep 22, 2020
ezpotd
an hour ago
No more topics!
Cyclic points [variations on a Fuhrmann generalization]
shobber   26
N 6 hours ago by bjump
Source: China TST 2006
$H$ is the orthocentre of $\triangle{ABC}$. $D$, $E$, $F$ are on the circumcircle of $\triangle{ABC}$ such that $AD \parallel BE \parallel CF$. $S$, $T$, $U$ are the semetrical points of $D$, $E$, $F$ with respect to $BC$, $CA$, $AB$. Show that $S, T, U, H$ lie on the same circle.
26 replies
shobber
Jun 18, 2006
bjump
6 hours ago
Cyclic points [variations on a Fuhrmann generalization]
G H J
G H BBookmark kLocked kLocked NReply
Source: China TST 2006
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
shobber
3498 posts
#1 • 3 Y
Y by mathematicsy, Adventure10, Mango247
$H$ is the orthocentre of $\triangle{ABC}$. $D$, $E$, $F$ are on the circumcircle of $\triangle{ABC}$ such that $AD \parallel BE \parallel CF$. $S$, $T$, $U$ are the semetrical points of $D$, $E$, $F$ with respect to $BC$, $CA$, $AB$. Show that $S, T, U, H$ lie on the same circle.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
treegoner
637 posts
#2 • 4 Y
Y by Adventure10, Mango247, khina, LNHM
It is a particular case for $AD, BE, CF$ are concurrent at a point $P$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
iura
481 posts
#3 • 1 Y
Y by Adventure10
It follows from the same lemma that was used to prove problem 2 from 2nd China TST 2006.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
User335559
472 posts
#4 • 2 Y
Y by Adventure10, Mango247
Can someone bash this problem with complex numbers?
This post has been edited 2 times. Last edited by User335559, Jun 10, 2018, 1:13 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PROF65
2016 posts
#6 • 2 Y
Y by amar_04, Adventure10
it s special case of hagge circles when $P$ is an infinity point
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
User335559
472 posts
#7 • 2 Y
Y by Adventure10, Mango247
Electron_Madnesss wrote:
Actually, this problem was there in Evan's textbook and my solution to it was (surprisingly!) the same as his, so I am posting it here.

$\rightarrow$ We $(ABC)$ to be the unit circle with $a=1,b=-1 $ and $k=\dfrac{-1}{2}$.
Also, let $s,t \in (ABC)$.
We claim that $K$ is the center of $(STUH)$.

Notice that $x = \dfrac{1}{2}(s+t-1+\dfrac{s}{t}) \implies 2\cdot(2\text{Re}x +1 ) = s+t+\dfrac{1}{s} +\dfrac{1}{t} + \dfrac{s}{t} + \dfrac{t}{s}$, which does not depend on $X$.

Also, $|k+\dfrac{s+t}{2}|^2 = 3+ 2\cdot(2Rex+2) \implies \dfrac{s+t}{2} $ has a fixed distance with $k$ as desired$\blacksquare$

I do not understand.
You're not allowed to put $a=1,b=-1$ since $ABC$ is not a right triangle. And what is $X$??
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wictro
119 posts
#8 • 1 Y
Y by Adventure10
Electron_Madnesss wrote:
Actually, this problem was there in Evan's textbook and my solution to it was (surprisingly!) the same as his, so I am posting it here.

$\rightarrow$ We $(ABC)$ to be the unit circle with $a=1,b=-1 $ and $k=\dfrac{-1}{2}$.
Also, let $s,t \in (ABC)$.
We claim that $K$ is the center of $(STUH)$.

Notice that $x = \dfrac{1}{2}(s+t-1+\dfrac{s}{t}) \implies 2\cdot(2\text{Re}x +1 ) = s+t+\dfrac{1}{s} +\dfrac{1}{t} + \dfrac{s}{t} + \dfrac{t}{s}$, which does not depend on $X$.

Also, $|k+\dfrac{s+t}{2}|^2 = 3+ 2\cdot(2Rex+2) \implies \dfrac{s+t}{2} $ has a fixed distance with $k$ as desired$\blacksquare$

Is this a solution to USAMO 2015 P2 or am I wrong?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
e_plus_pi
756 posts
#9 • 1 Y
Y by Adventure10
Oh Darn, I copied the wrong solution from my notebook.
@above you are correct this the solution of USAMO 2015-2
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AlastorMoody
2125 posts
#10 • 2 Y
Y by Adventure10, Mango247
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AwesomeYRY
579 posts
#11
Y by
$a,b,c,d$, with the circumcircle as the unit circle, will be our free variables. Note that due to parallel conditions we have that $e=\frac{ad}{b}$ and $f=\frac{ad}{c}$

Then,
\[s=b+c-bc\overline{d}=b+c-\frac{bc}{d}\]\[t=a+c-ac\overline{e} = a+c - ac \cdot \frac{b}{ad}=a+c-\frac{bc}{d}\]\[u=a+b-ab\overline{f} = a+b - ab\cdot \frac{c}{ad}=a+b-\frac{bc}{d}\]\[h =a+b+c\]Now, we translate by $\frac{bc}{d}-a-b-c$ to get
\[s'=-a,t'=-b,u'=-c,h'=\frac{bc}{d}\]These 4 points are clearly all on the unit circle, so we have shown that $S,T,U,H$ can be translated to a unit circle, and are therefore concyclic
$\blacksquare$
This post has been edited 1 time. Last edited by AwesomeYRY, Apr 9, 2021, 5:13 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jayme
9803 posts
#12
Y by
Dear Mathlinkers,

http://jl.ayme.pagesperso-orange.fr/vol5.html then P-hagge circle, p. 44-48.

Sincerely
Jean-Louis
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tafi_ak
309 posts
#13
Y by
We use complex number. $(ABC)$ is our unit circle. Consider $A=a,B=b,C=c$. So $h=a+b+c$. And suppose $D$ is any point on the unit circle. From the parallel condition we get a relation between points $a,b,c,d,e,f$ that
\begin{eqnarray*}
ad=be=cf
\end{eqnarray*}The co-ordinate of $s=b+c-\frac{bc}{d}$. Similarly $t=a+c-\frac{ac}{e},u=a+b-\frac{ab}{f}$. For being $S,T,U,H$ concyclic, the quantity must be
\begin{eqnarray*}
\frac{s-u}{t-u}\div \frac{s-h}{t-h}&=&\frac{\frac{abd-bcf}{df}+c-a}{\frac{abe-acf}{ef}+c-b}\div \frac{c+d}{c+e},\hspace{2em}[abd=bcf, abe=acf]\\
&=&\frac{c-a}{c-b}\cdot \frac{c+e}{c+d}\in \mathbb{R}
\end{eqnarray*}Substituting the conjugates of all points (1 minute computation) we get the same quantity. Therefore it must be a real number and we are done. $\square$
This post has been edited 2 times. Last edited by Tafi_ak, Dec 2, 2021, 1:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HoRI_DA_GRe8
599 posts
#14 • 1 Y
Y by D_S
Sketch :Note that $S\in \odot(\triangle BHC)$ and similarly other cases hold.
Prove that $DS,ET,FU$ are concurrent and they lie on $\odot(\triangle ABC)$
If these 3 lines concurr at $G$ prove that $AGTU$ and similarly other symnetrical quadrilaterals are cyclic.
Now use this cyclicities to prove the final concyclicity.
All of these can be proved by angels $\blacksquare$
This post has been edited 1 time. Last edited by HoRI_DA_GRe8, Apr 24, 2022, 11:35 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
LLL2019
834 posts
#15
Y by
shobber wrote:
$H$ is the orthocentre of $\triangle{ABC}$. $D$, $E$, $F$ are on the circumcircle of $\triangle{ABC}$ such that $AD \parallel BE \parallel CF$. $S$, $T$, $U$ are the semetrical points of $D$, $E$, $F$ with respect to $BC$, $CA$, $AB$. Show that $S, T, U, H$ lie on the same circle.

Cited in Titu's book as "MOP 2006" :maybe:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
eibc
600 posts
#16
Y by
The parallel condition gives us $ad = be = cf = z$ for some complex number $z$ of magnitude $1$, so $d = \tfrac{z}{a}$, $e = \tfrac{z}{b}$, $f = \tfrac{z}{c}$. Then, using the complex foot formula, we can find that $$\frac{\tfrac{z}{a} + s}{2} = \frac{1}{2}\left(b + c + \frac{z}{a} - \frac{abc}{z}\right).$$This means $s = b + c - \tfrac{abc}{z}$, and we similarly find that $t = a + c - \tfrac{abc}{z}$, $u = a + b - \tfrac{abc}{z}$. Now, to show that $STUH$ is concyclic, it suffices to prove that $\tfrac{h - s}{u - s} \div \tfrac{h - t}{u - t}$ is real, or it equals its conjugate. First, we evaluate the quantity as it is; noting that $h = a + b + c$, we get
$$\begin{aligned} \frac{h - s}{u - s} \div \frac{h - t}{u - t} &= \frac{a + \tfrac{abc}{z}}{a - c} \div \frac{b + \tfrac{abc}{z}}{b - c} \\ &= \frac{a(z + bc)(b - c)}{b(z + ac)(a - c)}.\end{aligned}$$The conjugate of this is
$$\begin{aligned} \frac{\tfrac{1}{a}(\tfrac{1}{z} + \tfrac{1}{bc})(\tfrac{1}{b} - \tfrac{1}{z})}{\tfrac{1}{b}(\tfrac{1}{c} + \tfrac{1}{ac})(\tfrac{1}{a} - \tfrac{1}{c})} &= \frac{a(z + bc)(b - c)}{b(z + ac)(a - c)} \\ &= \frac{h - s}{u - s} \div \frac{h - t}{u - t}, \end{aligned}$$so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
peppapig_
280 posts
#17 • 2 Y
Y by mulberrykid, john0512
WLOG, let $(ABC)$ be the unit circle and rotate $ABC$ so that $AD$ is parallel to the $y$-axis. Therefore, we have that $d=\frac{1}{a}$, $e=\frac{1}{b}$, and $f=\frac{1}{c}$. Using reflection formulas, we find that $s=b+c-abc$, $t=c+a-abc$, and $u=a+b-abc$.

From here, we find that since $\frac{s-t}{h-t}*\frac{h-u}{s-u}$ is equal to its conjugate, meaning that it's real, $S$, $T$, $H$, and $U$ are concyclic, and we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
john0512
4191 posts
#18
Y by
Let the real line be the line through $O$ perpendicular to all of $AD,BE,CF$. Thus, we have $d=\frac{1}{a}$ and so on. We have that $$D'=b+c-\frac{bc}{d}=b+c-abc,$$and similarly $$E'=c+a-abc,F'=a+b-abc.$$We wish to show that these are concyclic with $a+b+c$. Of course, shift by $-a-b-c+abc$, so we wish to show $$-a,-b,-c,abc$$are concyclic. Thus, it suffices to show that $$\frac{c(b-a)(1+ab)}{b(c-a)(1+ac)}$$is real. This is just because $$\frac{\frac{1}{c}(\frac{1}{b}-\frac{1}{a})(1+\frac{1}{ab})}{\frac{1}{b}(\frac{1}{c}-\frac{1}{a})(1+\frac{1}{ac})}$$$$=\frac{b(ac-bc)(abc+c)}{c(ab-bc)(abc+b)}=\frac{c(a-b)(ab+1)}{b(a-c)(ac+1)},$$as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ritwin
158 posts
#19 • 1 Y
Y by LLL2019
There's a quicker finish to the complex bash than checking the angle condition for concyclicity :D

Set $ABC$ on the unit circle and rotate so that $AD$, $BE$, and $CF$ are vertical lines. It follows that $(d, e, f) = (\overline{a}, \overline{b}, \overline{c})$ and $(x, y, z) = (b+c-abc, c+a-abc, a+b-abc)$.

Recalling $h = a+b+c$, quadrilateral $HXYZ$ has circumcenter $\omega = a+b+c-abc$ because \[ x-\omega = -a, \quad y-\omega = -b, \quad z-\omega = -c, \quad h-\omega = abc, \]and all four of these differences have magnitude $1$. $\blacksquare$
This post has been edited 1 time. Last edited by Ritwin, Feb 11, 2025, 1:56 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hexapr353
9 posts
#20
Y by
Sorry for bumping but I wonder if there exists a synthetic solution.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
OronSH
1748 posts
#21 • 1 Y
Y by megarnie
First consider the following $\measuredangle SBC=\measuredangle CBD=\measuredangle CAD=\measuredangle ADF=\measuredangle ABF$ so $BS,BF$ are isogonal, similarly $CS,CE$ are isogonal and thus the isogonal conjugate of $S$ is the intersection of $BF$ and $CE,$ which lies on the shared perpendicular bisector of $AD,BF,CE.$ Similarly for $T,U$ and thus we get that $S,T,U$ are on the isogonal conjugate of this perpendicular bisector which is a rectangular circumhyperbola.

Now the center of this hyperbola lies on the nine point circle so the antipode of $A$ on this hyperbola lies on $(BHC)$ by homothety, but $S$ lies on the hyperbola and this circle (by angle chasing) so it is the antipode of $A$ (since $B,H,C$ are already on the hyperbola and two conics intersect at $4$ points). Then $AS,BT,CU$ concur at the center of the hyperbola, which lies on the nine point circle, and $ABC,STU$ are reflections over this point. But the reflection of the point where the hyperbola meets $(ABC)$ again over the center of the hyperbola will be $H$ which finishes.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RedFireTruck
4243 posts
#22
Y by
Let $\triangle ABC$ lie on the unit circle. WLOG, let $D$, $E$, and $F$ be $\overline{a}$, $\overline{b}$, and $\overline{c}$, respectively.

$S$ must lie at $$s=\overline{(\frac{\overline{a}-b}{c-b})}(c-b)+b=\frac{(a-\frac1b)(c-b)}{\frac1c-\frac1b}+b=(\frac1b-a)bc+b=b+c-abc$$.

Similarly, $t=a+c-abc$ and $u=a+b-abc$. Also note that $h=a+b+c$.

It suffices to prove that $\arg(\frac{s-u}{t-u})=\arg(\frac{s-h}{t-h})$ or $\arg(\frac{c-a}{c-b})=\arg(\frac{a+abc}{b+abc})$ which is equivalent to proving $$\frac{(c-a)(b+abc)}{(c-b)(a+abc)}\in \mathbb{R}.$$
This is true because $$\overline{(\frac{(c-a)(b+abc)}{(c-b)(a+abc)})}=\frac{(\frac1c-\frac1a)(\frac1b+\frac1{abc})}{(\frac1c-\frac1b)(\frac1a+\frac1{abc})}=\frac{(ab-bc)(ac+1)}{(ab-ac)(bc+1)}=\frac{(c-a)(b+abc)}{(c-b)(a+abc)}.$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ianis
419 posts
#23
Y by
Synthetic

Complex
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nuterrow
254 posts
#24
Y by
The parallel condition tells us that $ad=be=cf$. We can compute $s=b+c-\frac{bc}{d}$, we can similarly compute $t$ and $u$ as well and we know that $h=\frac{a+b+c}{2}$. For $STUH$ to be cyclic, we want $\frac{(t-s)(u-h)}{(u-s)(t-h)}$ to be real. So, $$\frac{(t-s)(u-h)}{(u-s)(t-h)} = \frac{(bed-aed)(cf+ab)}{(cfd-afd)(be+ac)}=\frac{(be-ae)(cf+ab)}{(cf-af)(be+ac)}$$Now, $$\overline{\frac{(be-ae)(cf+ab)}{(cf-af)(be+ac)}} = \frac{c}{b}\times\frac{(b-a)(cf+ab)}{(c-a)(be+ac)}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lpieleanu
3010 posts
#25
Y by
Solution
This post has been edited 1 time. Last edited by lpieleanu, Mar 10, 2025, 11:22 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ali123456
52 posts
#26
Y by
My solution
This post has been edited 1 time. Last edited by ali123456, Apr 19, 2025, 4:24 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilikeminecraft
680 posts
#27
Y by
Let us redefine $S, T, U$ as $D', E', F'.$ Let $A, B, C, D$ be $a, b, c, d.$ We have that the foot from $D$ to $\overline{BC}$ is $\frac12(d + b + c - \overline dbc).$ Thus, $D'$ is $b + c - \overline dbc.$ Now, using the fact that $\overline{AD} \parallel \overline{BE} \parallel \overline{CF}$ and the reflections, we have that $BF'E'C, AF'D'C, AE'D'B$ are all parallelograms. Thus, we can compute $E' = A + D' - B = a + c - \overline dbc, F' = A + D' - C = a + b - \overline dbc.$ To prove cyclic, we can just prove that $\angle D'F'E' = \angle D'HE'.$ We can do this by proving that $\frac{\frac{D' - F'}{E' - F'}}{\frac{D' - H}{E' - H}}\in\mathbb R.$ Here is the computation:
\begin{align*}
	\frac{\frac{D' - F'}{E' - F'}}{\frac{D' - H}{E' - H}} & = \frac{c - a}{c - b}\cdot\frac{-\overline dbc - b}{-\overline dbc - a} \\
	& = \frac{c - a}{c - b} \cdot \frac{bc + bd}{bc + ad} \\
	\overline{\left(\frac{c - a}{c - b} \cdot \frac{bc + bd}{bc + ad}\right)} & = \frac{a - c}{b - c} \frac ba \cdot \frac{a(d + c)}{bc + ad} \\
	& = \frac{c - a}{c - b} \cdot \frac{bc + bd}{bc + ad}
\end{align*}and hence we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bjump
1040 posts
#28
Y by
Complex bash with $(ABC)$ as the unit circle let $A=a$, $B=b$, $C=c$, $D=d$ we have $H = a+b+c$, $e = \tfrac{ad}{b}$, and $f = \tfrac{ad}{c}$. We can compute $S = b+ c - \tfrac{bc}{d}$, $T = c+a - \tfrac{cb}{d}$, $V = b+a - \tfrac{cb}{d}$.
It suffices to show the following:
$$\frac{(S-U)(T-H)}{(T-U)(S-H)} \in \mathbb R$$$$\frac{(c-a)(bd+bc)}{(c-b)(ad+bc)} \in \mathbb R$$Conjugating gives
$$\frac{\tfrac1c- \tfrac1a}{\tfrac1c-\tfrac1b} \cdot \frac{\tfrac1{bc} + \tfrac1{bd}}{\tfrac1{ad}+\tfrac1{bc}}= \frac{(c-a)(bd+bc)}{(c-b)(ad+bc)}$$Therefore it is real and $SHUT$ is cyclic.
Z K Y
N Quick Reply
G
H
=
a