2008 iTest Problems/Problem 75

Problem

Let \[S=\sqrt{1+\dfrac1{1^2}+\dfrac1{2^2}}+\sqrt{1+\dfrac1{2^2}+\dfrac1{3^2}}+\cdots+\sqrt{1+\dfrac1{2007^2}+\dfrac1{2008^2}}.\] Compute $\lfloor S^2\rfloor$.

Solution

With summation notation, $S = \sum_{i=1}^{2007} \sqrt{1 + \tfrac{1}{i^2} + \tfrac{1}{(i+1)^2}}$. By using a common denominator and simplifying, we have

\begin{align*} S &= \sum_{i=1}^{2007} \sqrt{ \frac{i^2 (i^2 + 2i + 1) + i^2 + 2i + 1 + i^2}{i^2 (i+1)^2} } \\ &= \sum_{i=1}^{2007} \sqrt{ \frac{i^4 + 2i^3 + 3i^2 + 2i + 1}{i^2 (i+1)^2} } \\ &= \sum_{i=1}^{2007} \sqrt{ \frac{(i^2 + i + 1)^2}{i^2 (i+1)^2} } \\ &= \sum_{i=1}^{2007} \frac{i^2 + i + 1}{i^2 + i} \\ &= \sum_{i=1}^{2007} (1 + \frac{1}{i(i+1)}) \\ &= \sum_{i=1}^{2007} (1 + \frac{1}{i} - \frac{1}{i+1}) \end{align*}

Notice that part of the terms telescope, making calculation simpler. Calculation results in $S = 2007 + 1 - \tfrac{1}{2008}$. Thus, $S^2 = (2008 - \tfrac{1}{2008})^2 = 4032064 - 2 + (\tfrac{1}{2008})^2$. Since $0 < (\tfrac{1}{2008})^2 < 1$, we conclude that $\lfloor S^2\rfloor = \boxed{4032062}$.

See Also

2008 iTest (Problems)
Preceded by:
Problem 74
Followed by:
Problem 76
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100