# 2008 iTest Problems/Problem 76

## Problem

During the car ride home, Michael looks back at his recent math exams. A problem on Michael's calculus mid-term gets him starting thinking about a particular quadratic, $$x^2-sx+p,$$ with roots $r_1$ and $r_2$. He notices that $$r_1+r_2=r_1^2+r_2^2=r_1^3+r_2^3=\cdots=r_1^{2007}+r_2^{2007}.$$ He wonders how often this is the case, and begins exploring other quantities associated with the roots of such a quadratic. He sets out to compute the greatest possible value of $$\dfrac1{r_1^{2008}}+\dfrac1{r_2^{2008}}.$$ Help Michael by computing this maximum.

## Solution

By Vieta's Formulas, $r_1 + r_2 = s$. That means $r_1^2 + r_2^2 = s^2 - 2p = s$ and $r_1^3 + r_1^3 = (r_1 + r_2)^3 - 3r_1^2r_2 - 3r_1r_2^2 = s^3 - 3ps$.

Note that $s = s^2 - 2p$, so $p = \frac{s^2 - s}{2}$. We also know that $s = s^3 - 3ps$, so substituting for $p$ results in \begin{align*} s &= s^3 - 3s \cdot \frac{s^2 - s}{2} \\ s &= s^3 - \tfrac32 s^3 + \tfrac32 s^2 \\ 0 &= -\tfrac12 s^3 + \tfrac32 s^2 - s \\ 0 &= s^3 - 3s^2 + 2s \\ &= s(s-2)(s-1) \end{align*}

Thus, $s = 0,1,2$. If $s = 1$ or $s = 0$, then $p = 0$. However, both cases result in one root being zero, so $\dfrac1{r_1^{2008}}+\dfrac1{r_2^{2008}}$ is undefined. If $s = 2$, then $p = 1$, making both roots equal to $1$. Since $1^n = 1$ for $1 \le n \le 2007$, this result satisfies all conditions. Thus, $\dfrac1{r_1^{2008}}+\dfrac1{r_2^{2008}} = 1+1 = \boxed{2}$.

## See Also

 2008 iTest (Problems) Preceded by:Problem 75 Followed by:Problem 77 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • 61 • 62 • 63 • 64 • 65 • 66 • 67 • 68 • 69 • 70 • 71 • 72 • 73 • 74 • 75 • 76 • 77 • 78 • 79 • 80 • 81 • 82 • 83 • 84 • 85 • 86 • 87 • 88 • 89 • 90 • 91 • 92 • 93 • 94 • 95 • 96 • 97 • 98 • 99 • 100
Invalid username
Login to AoPS