Difference between revisions of "2008 iTest Problems/Problem 57"
Rockmanex3 (talk | contribs) (Solution to Problem 57 -- BIG NUMBERS) |
Rockmanex3 (talk | contribs) m |
||
Line 14: | Line 14: | ||
<cmath>\left(\frac{y^2 - 2y + 1}{y^2 - 1} \right) + \left(\frac{y^2 + 2y + 1}{y^2 - 1} \right)</cmath> | <cmath>\left(\frac{y^2 - 2y + 1}{y^2 - 1} \right) + \left(\frac{y^2 + 2y + 1}{y^2 - 1} \right)</cmath> | ||
<cmath>\frac{2y^2 + 2}{y^2 - 1}</cmath> | <cmath>\frac{2y^2 + 2}{y^2 - 1}</cmath> | ||
− | If a triangle has opposite side <math>x\sqrt{2}</math> and hypotenuse <math>2</math>, by the [[Pythagorean Theorem]], the adjacent side's length is <math>\sqrt{4-2x^2}</math>. That means if <math>\sin(\alpha) = \tfrac{\sqrt{2}}{2}x</math>, then <math>\tan(\alpha) = \sqrt{\tfrac{2x^2}{4-2x^2}}</math>. That means <math>y = \tan(\sin^{-1} (\tfrac{\sqrt{2}}{2}x)) = \sqrt{\tfrac{2x^2}{4-2x^2}}</math>. | + | If a triangle has opposite side <math>x\sqrt{2}</math> and hypotenuse <math>2</math>, by the [[Pythagorean Theorem]], the adjacent side's length is <math>\sqrt{4-2x^2}</math>. That means if <math>\sin(\alpha) = \tfrac{\sqrt{2}}{2}x</math>, then <math>\tan(\alpha) = \sqrt{\tfrac{2x^2}{4-2x^2}}</math>. That means <math>y = \tan(\sin^{-1} (\tfrac{\sqrt{2}}{2}x)) = \sqrt{\tfrac{2x^2}{4-2x^2}}</math>. Therefore, the sum of the two possible values of <math>\tan \theta</math> is |
<cmath>\frac{2 \cdot \frac{2x^2}{4-2x^2} + 2}{\frac{2x^2}{4-2x^2} - 1}</cmath> | <cmath>\frac{2 \cdot \frac{2x^2}{4-2x^2} + 2}{\frac{2x^2}{4-2x^2} - 1}</cmath> | ||
<cmath>\frac{ \frac{4x^2}{4-2x^2} + \frac{8-4x^2}{4-2x^2} }{\frac{2x^2}{4-2x^2} - \frac{4 - 2x^2}{4-2x^2} }</cmath> | <cmath>\frac{ \frac{4x^2}{4-2x^2} + \frac{8-4x^2}{4-2x^2} }{\frac{2x^2}{4-2x^2} - \frac{4 - 2x^2}{4-2x^2} }</cmath> |
Latest revision as of 19:35, 4 August 2018
Problem
Let a and b be the two possible values of given that . If , where and are relatively prime positive integers, compute .
Solution
Let . Multiply both sides by to get Let . Using the sum formula for tangent, the sum of the two possible values of is If a triangle has opposite side and hypotenuse , by the Pythagorean Theorem, the adjacent side's length is . That means if , then . That means . Therefore, the sum of the two possible values of is Thus, .
See Also
2008 iTest (Problems) | ||
Preceded by: Problem 56 |
Followed by: Problem 58 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • 61 • 62 • 63 • 64 • 65 • 66 • 67 • 68 • 69 • 70 • 71 • 72 • 73 • 74 • 75 • 76 • 77 • 78 • 79 • 80 • 81 • 82 • 83 • 84 • 85 • 86 • 87 • 88 • 89 • 90 • 91 • 92 • 93 • 94 • 95 • 96 • 97 • 98 • 99 • 100 |