Difference between revisions of "2006 AMC 10A Problems/Problem 23"
m |
m |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | {{image}} | ||
+ | |||
[[Circle]]s with [[center]]s <math>A</math> and <math>B</math> have [[radius |radii]] 3 and 8, respectively. A [[common internal tangent line | common internal tangent]] [[intersect]]s the circles at <math>C</math> and <math>D</math>, respectively. [[Line]]s <math>AB</math> and <math>CD</math> intersect at <math>E</math>, and <math>AE=5</math>. What is <math>CD</math>? | [[Circle]]s with [[center]]s <math>A</math> and <math>B</math> have [[radius |radii]] 3 and 8, respectively. A [[common internal tangent line | common internal tangent]] [[intersect]]s the circles at <math>C</math> and <math>D</math>, respectively. [[Line]]s <math>AB</math> and <math>CD</math> intersect at <math>E</math>, and <math>AE=5</math>. What is <math>CD</math>? | ||
Revision as of 10:18, 17 February 2007
Problem
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Circles with centers and have radii 3 and 8, respectively. A common internal tangent intersects the circles at and , respectively. Lines and intersect at , and . What is ?
Solution
and are vertical angles so they are congruent, as are angles and (both are right angles because the radius and tangent line at a point on a circle are always perpendicular). Thus, .
By the Pythagorean Theorem, line segment . The sides are proportional, so . This makes and .
See also
2006 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |