Difference between revisions of "2008 iTest Problems/Problem 7"

(Solution)
m
 
Line 8: Line 8:
 
<math>(n+5)^2 < 2033</math>
 
<math>(n+5)^2 < 2033</math>
  
The integers from <math>-50</math> to <math>40</math> satisfy this equation, so the answer is <math> 40- (-50)+1 = 91</math>
+
The integers from <math>-50</math> to <math>40</math> satisfy this equation, so the answer is <math> 40- (-50)+1 = \boxed{91}</math>.
  
==See also==
+
==See Also==
 +
{{2008 iTest box|num-b=6|num-a=8}}
 +
 
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 23:56, 21 June 2018

Problem

Find the number of integers $n$ for which $n^2 + 10n < 2008$.

Solution

First, we complete the square of the left side of the equation, giving us:

$(n+5)^2 < 2033$

The integers from $-50$ to $40$ satisfy this equation, so the answer is $40- (-50)+1 = \boxed{91}$.

See Also

2008 iTest (Problems)
Preceded by:
Problem 6
Followed by:
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100